Abstract

We present an experimental technique that allows the simultaneous spatial imaging and spectral analysis of falling droplets that exhibit lasing. Single droplet investigations serve as, among other purposes, a preliminary study for spray and combustion researchers. The described setup provides a valuable tool for the evaluation of microdroplet investigations with laser-spectroscopic techniques that rely on laser-induced fluorescence (LIF) or similar spectroscopical phenomena. The emphasis is that both spatial and spectral information are obtained from single-shot images of a falling droplet. Furthermore, combining spatial imaging and a spatially resolving optical multichannel analyzer makes a pointwise rastering of the droplets spectrum possible. This allows for the (almost) unambiguous determination of sources of influence on the spectrum of these droplets—such as geometrical distortion and lasing, nondissolved tracer lumps, and similar phenomena. Although the focus is on the experimental technique itself, we supplement detailed studies of lasing in falling microdroplets. These results were obtained with the aim of developing a system for measuring temperature distributions in droplets and sprays. In the light of these results the practice of calibrating a droplets spectrum by use of a bulk liquid sample needs to be critically reviewed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Lu, L. A. Melton, “Measurement of transient temperature field within a falling droplet,” AIAA J. 38, 95–101 (2000).
    [CrossRef]
  2. T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 69, 1–4 (1999).
  3. P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.
  4. H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).
    [CrossRef] [PubMed]
  5. H. M. Tzeng, M. B. Long, R. K. Chang, “Size and shape variation of liquid droplets deduced from morphology-dependent resonances in fluorescence spectra,” in Particle Sizing and Spray Analysis, N. Chigier and G. W. Stewart, ed., Proc. SPIE573, 80–83 (1985).
  6. J. H. Eickmans, S. X. Qian, R. K. Chang, “Detection of water droplet size and anion species by nonlinear optical scattering,” Part. Charact. 4, 85–89 (1986).
    [CrossRef]
  7. B. Abramzon, W. A. Sirignano, “Droplet vaporization model for spray combustion calculations,” Int. J. Heat Mass Transfer 32, 1605–1618 (1989).
    [CrossRef]
  8. C. Varnavas, “A droplet evaporation model for high temperature and pressure spray,” Ph.D. dissertation (University of Illinois at Urban-Champaign, 1995).
  9. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
  10. R. Becker, Theorie der Wärme (Springer-Verlag, 1985).
    [CrossRef]
  11. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
    [CrossRef]
  12. A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
    [CrossRef] [PubMed]
  13. J. F. Owen, R. K. Chang, R. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
    [CrossRef]
  14. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and levelshift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).
  15. J. van Beeck, “Rainbow phenomena: development of a laser-based, nonintrusive technique for measuring droplet size, temperature and velocity,” Ph.D. dissertation (Universiteit Eindhoven, 1997).
  16. A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
    [CrossRef] [PubMed]
  17. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
    [CrossRef]
  18. Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
    [CrossRef] [PubMed]
  19. B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
    [CrossRef]
  20. Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
    [CrossRef]
  21. E. A. Power, T. Thirunamachandran, “Quantum electrodynamics in a cavity,” Phys. Rev. A 25, 2473–2484 (1982).
    [CrossRef]
  22. R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 5, 2137–2140 (1985).
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    [CrossRef]
  24. P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
    [CrossRef]
  25. J. D. Eversole, H. B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
    [CrossRef]
  26. J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
    [CrossRef] [PubMed]
  27. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
    [CrossRef] [PubMed]
  28. F. Bai, L. A. Melton, “High-temperature, oxygen-resistant molecular fluorescence thermometers,” Appl. Spectrosc. 51, 1276–1280 (1997).
    [CrossRef]
  29. A. Braun, “Laserspektroskopische Messverfahren zur Temperaturbestimmung in Sprays,” Master’s thesis (Georg-August-Universität, Göttingen, 2001).

2004 (2)

B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

2003 (1)

Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

2000 (1)

Q. Lu, L. A. Melton, “Measurement of transient temperature field within a falling droplet,” AIAA J. 38, 95–101 (2000).
[CrossRef]

1999 (1)

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 69, 1–4 (1999).

1997 (1)

F. Bai, L. A. Melton, “High-temperature, oxygen-resistant molecular fluorescence thermometers,” Appl. Spectrosc. 51, 1276–1280 (1997).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

1995 (1)

J. D. Eversole, H. B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
[CrossRef]

1993 (1)

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

1992 (1)

A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

1991 (1)

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

1990 (1)

P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
[CrossRef]

1989 (1)

B. Abramzon, W. A. Sirignano, “Droplet vaporization model for spray combustion calculations,” Int. J. Heat Mass Transfer 32, 1605–1618 (1989).
[CrossRef]

1988 (1)

J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef] [PubMed]

1987 (1)

S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and levelshift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).

1986 (1)

J. H. Eickmans, S. X. Qian, R. K. Chang, “Detection of water droplet size and anion species by nonlinear optical scattering,” Part. Charact. 4, 85–89 (1986).
[CrossRef]

1985 (1)

R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 5, 2137–2140 (1985).

1984 (1)

H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).
[CrossRef] [PubMed]

1982 (2)

J. F. Owen, R. K. Chang, R. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

E. A. Power, T. Thirunamachandran, “Quantum electrodynamics in a cavity,” Phys. Rev. A 25, 2473–2484 (1982).
[CrossRef]

1981 (1)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Abramzon, B.

B. Abramzon, W. A. Sirignano, “Droplet vaporization model for spray combustion calculations,” Int. J. Heat Mass Transfer 32, 1605–1618 (1989).
[CrossRef]

Acker, W. P.

A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

Artemyev, M. V.

B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Bai, F.

F. Bai, L. A. Melton, “High-temperature, oxygen-resistant molecular fluorescence thermometers,” Appl. Spectrosc. 51, 1276–1280 (1997).
[CrossRef]

Barber, R. W.

J. F. Owen, R. K. Chang, R. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

Becker, R.

R. Becker, Theorie der Wärme (Springer-Verlag, 1985).
[CrossRef]

Beushausen, V.

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 69, 1–4 (1999).

Boland, J. J.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Bradley, A. L.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Braun, A.

A. Braun, “Laserspektroskopische Messverfahren zur Temperaturbestimmung in Sprays,” Master’s thesis (Georg-August-Universität, Göttingen, 2001).

Campillo, A. J.

J. D. Eversole, H. B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
[CrossRef]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Chang, R. K.

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef] [PubMed]

J. H. Eickmans, S. X. Qian, R. K. Chang, “Detection of water droplet size and anion species by nonlinear optical scattering,” Part. Charact. 4, 85–89 (1986).
[CrossRef]

H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).
[CrossRef] [PubMed]

J. F. Owen, R. K. Chang, R. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

H. M. Tzeng, M. B. Long, R. K. Chang, “Size and shape variation of liquid droplets deduced from morphology-dependent resonances in fluorescence spectra,” in Particle Sizing and Spray Analysis, N. Chigier and G. W. Stewart, ed., Proc. SPIE573, 80–83 (1985).

Chemla, Y. R.

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

Chen, G.

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

Ching, S. C.

S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and levelshift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).

Chylek, P.

P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
[CrossRef]

Connolly, T. M.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Donegan, J. F.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Eickmans, J. H.

J. H. Eickmans, S. X. Qian, R. K. Chang, “Detection of water droplet size and anion species by nonlinear optical scattering,” Part. Charact. 4, 85–89 (1986).
[CrossRef]

Eversole, J. D.

J. D. Eversole, H. B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
[CrossRef]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Farré, G.

P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.

Gaponik, N.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Gerlach, M.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Grünefeld, G.

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 69, 1–4 (1999).

Hara, Y.

Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

Heywood, J. B.

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).

Hilfer, E. S.

R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 5, 2137–2140 (1985).

Hill, S. C.

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

Hulet, R. G.

R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 5, 2137–2140 (1985).

Kleppner, D.

R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 5, 2137–2140 (1985).

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Lai, H. M.

S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and levelshift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).

Lavergne, G.

P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.

Lavieille, P.

P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.

Leach, D. H.

J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef] [PubMed]

Lebouché, M.

P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.

Lefevre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

Lemoine, F.

P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.

Lin, H. B.

J. D. Eversole, H. B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
[CrossRef]

Lin, H.-B.

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Long, M. B.

H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).
[CrossRef] [PubMed]

H. M. Tzeng, M. B. Long, R. K. Chang, “Size and shape variation of liquid droplets deduced from morphology-dependent resonances in fluorescence spectra,” in Particle Sizing and Spray Analysis, N. Chigier and G. W. Stewart, ed., Proc. SPIE573, 80–83 (1985).

Lu, Q.

Q. Lu, L. A. Melton, “Measurement of transient temperature field within a falling droplet,” AIAA J. 38, 95–101 (2000).
[CrossRef]

Mazumder, M. M.

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

Melton, L. A.

Q. Lu, L. A. Melton, “Measurement of transient temperature field within a falling droplet,” AIAA J. 38, 95–101 (2000).
[CrossRef]

F. Bai, L. A. Melton, “High-temperature, oxygen-resistant molecular fluorescence thermometers,” Appl. Spectrosc. 51, 1276–1280 (1997).
[CrossRef]

Möller, B. M.

B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Müller, T.

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 69, 1–4 (1999).

Owen, J. F.

J. F. Owen, R. K. Chang, R. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

Power, E. A.

E. A. Power, T. Thirunamachandran, “Quantum electrodynamics in a cavity,” Phys. Rev. A 25, 2473–2484 (1982).
[CrossRef]

Przyjalgowski, M. A.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Qian, S. X.

J. H. Eickmans, S. X. Qian, R. K. Chang, “Detection of water droplet size and anion species by nonlinear optical scattering,” Part. Charact. 4, 85–89 (1986).
[CrossRef]

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

Rakovich, Y. P.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Ravel, O.

P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.

Rogach, A. L.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Ryder, A.

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

Serpengüzel, A.

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

Sirignano, W. A.

B. Abramzon, W. A. Sirignano, “Droplet vaporization model for spray combustion calculations,” Int. J. Heat Mass Transfer 32, 1605–1618 (1989).
[CrossRef]

Swindal, J. C.

A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Thirunamachandran, T.

E. A. Power, T. Thirunamachandran, “Quantum electrodynamics in a cavity,” Phys. Rev. A 25, 2473–2484 (1982).
[CrossRef]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

Tzeng, H. M.

H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).
[CrossRef] [PubMed]

H. M. Tzeng, M. B. Long, R. K. Chang, “Size and shape variation of liquid droplets deduced from morphology-dependent resonances in fluorescence spectra,” in Particle Sizing and Spray Analysis, N. Chigier and G. W. Stewart, ed., Proc. SPIE573, 80–83 (1985).

van Beeck, J.

J. van Beeck, “Rainbow phenomena: development of a laser-based, nonintrusive technique for measuring droplet size, temperature and velocity,” Ph.D. dissertation (Universiteit Eindhoven, 1997).

Varnavas, C.

C. Varnavas, “A droplet evaporation model for high temperature and pressure spray,” Ph.D. dissertation (University of Illinois at Urban-Champaign, 1995).

Wall, K. F.

H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).
[CrossRef] [PubMed]

Wannemacher, R.

B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Woggon, U.

B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Young, K.

S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and levelshift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).

Zhang, J.-Z.

J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef] [PubMed]

Aerosol Sci. Technol. (1)

J. F. Owen, R. K. Chang, R. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

AIAA J. (1)

Q. Lu, L. A. Melton, “Measurement of transient temperature field within a falling droplet,” AIAA J. 38, 95–101 (2000).
[CrossRef]

Appl. Opt. (1)

A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

Appl. Phys. B (1)

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 69, 1–4 (1999).

Appl. Spectrosc. (1)

F. Bai, L. A. Melton, “High-temperature, oxygen-resistant molecular fluorescence thermometers,” Appl. Spectrosc. 51, 1276–1280 (1997).
[CrossRef]

Int. J. Heat Mass Transfer (1)

B. Abramzon, W. A. Sirignano, “Droplet vaporization model for spray combustion calculations,” Int. J. Heat Mass Transfer 32, 1605–1618 (1989).
[CrossRef]

J. Appl. Phys. (1)

Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. D. Eversole, H. B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
[CrossRef]

S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and levelshift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).

Opt. Lett. (4)

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).
[CrossRef] [PubMed]

J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef] [PubMed]

Part. Charact. (1)

J. H. Eickmans, S. X. Qian, R. K. Chang, “Detection of water droplet size and anion species by nonlinear optical scattering,” Part. Charact. 4, 85–89 (1986).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. A (2)

E. A. Power, T. Thirunamachandran, “Quantum electrodynamics in a cavity,” Phys. Rev. A 25, 2473–2484 (1982).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (1)

B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 5, 2137–2140 (1985).

Other (7)

A. Braun, “Laserspektroskopische Messverfahren zur Temperaturbestimmung in Sprays,” Master’s thesis (Georg-August-Universität, Göttingen, 2001).

J. van Beeck, “Rainbow phenomena: development of a laser-based, nonintrusive technique for measuring droplet size, temperature and velocity,” Ph.D. dissertation (Universiteit Eindhoven, 1997).

H. M. Tzeng, M. B. Long, R. K. Chang, “Size and shape variation of liquid droplets deduced from morphology-dependent resonances in fluorescence spectra,” in Particle Sizing and Spray Analysis, N. Chigier and G. W. Stewart, ed., Proc. SPIE573, 80–83 (1985).

P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.

C. Varnavas, “A droplet evaporation model for high temperature and pressure spray,” Ph.D. dissertation (University of Illinois at Urban-Champaign, 1995).

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).

R. Becker, Theorie der Wärme (Springer-Verlag, 1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Classical explanation of morphology-dependent resonances as a result of total reflection. Light beams originating from the inside of the dashed circle refract to the outside. Illustrating the discrete size parameter x are two paths for x = 5 and x = 15 .

Fig. 2
Fig. 2

Schematic for the lowering of the lasing threshold in microdroplets.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Spectral slicing: images and spectra. Positioning the entrance slit of the spectrograph x 0 selects the x coordinate, whereas the software allows one to select only parts of the spatially resolved spectrum. The resulting spectrum originates only from within the cross section.

Fig. 5
Fig. 5

Four droplets resulting from four different aperture diameters of the droplet generator. To the left-hand side is the original calibration image taken with etched glass (linewidth 10 μ m ). Below are the respective spectra, which were normalized at 410 nm for comparison. The legend indicates the aperture diameter in micrometers. The ring of high intensity resulting from lasing is clearly visible in the images, as is the effect on the spectrum.

Fig. 6
Fig. 6

Effect of the absorption spectrum on the lasing spectrum of a single droplet of Rhodamin B in ethanol. The spectra may be compared only qualitatively, as the absorption spectrum was recorded with a bulk sample.

Fig. 7
Fig. 7

Lasing spectrum for POPOP droplets created by various aperture diameters. Fluorescence spectra are normalized at 410 nm . For comparison emission and absorption spectrum of a bulk liquid sample are included, as is an estimate of the lasing threshold (unmodified; see text).

Fig. 8
Fig. 8

Lasing spectrum for α-NPO-droplets created by various aperture diameters. Fluorescence spectra are normalized at 430 nm . For comparison emission and absorption spectrum of a bulk liquid sample are included, as is an estimate of the lasing threshold (modified with absorption spectrum).

Fig. 9
Fig. 9

Averaged droplet spectrum (aperture 50 μ m ) and bulk liquid spectrum (α-NPO) together with standard deviation from the average. In the region dominated by lasing the signal fluctuates strongly, as indicated by a deviation of almost 50%.

Fig. 10
Fig. 10

Eliminating lasing in droplets by reducing the dye concentration (Rhodamin B). The graph shows a bulk liquid spectrum in comparison with droplet spectra from high and low concentration of Rhodamin B in ethanol.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x = 2 π a λ ,
d = a ( 1 m o m i ) ,
Δ λ = λ n + 1 , l λ n , l = λ n + 1 , l λ n , l 2 π a tan 1 ( m ref 2 1 ) 1 2 ( m ref 2 1 ) 1 2 .
m x M x = c x m solv M solv ,

Metrics