Abstract

The effect of asymmetric monochromatic aberrations in the accommodation response was studied by using an adaptive optics (AO) system. This approach permits the precise modification of ocular aberrations during accommodation. The AO system is composed of a real-time Hartmann–Shack wavefront sensor and a membrane deformable mirror with 37 independent actuators. The accommodation response was measured in two subjects with their normal aberrations and with the asymmetric aberrations terms corrected. We found a significant and systematic increase in the response accommodation time, and a reduction in the peak velocity, in both subjects when the aberrations were corrected in real time. However, neither the latency time nor the precision of the accommodation were affected. These results may indicate that the monochromatic aberrations play a role in driving the accommodation response.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [CrossRef]
  2. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 1–10 (2001).
    [CrossRef]
  3. P. Artal, R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14, 1098–1100 (1989).
    [CrossRef] [PubMed]
  4. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
    [CrossRef] [PubMed]
  5. J. Liang, D. R. Williams, D. Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  6. E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  7. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [CrossRef] [PubMed]
  8. F. Vargas-Martín, P. Prieto, P. Artal, “Correction of the aberrations in the human eye with liquid crystal spatial light modulators: limits to the performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [CrossRef]
  9. P. Prieto, E. J. Fernández, S. Manzanera, P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
    [CrossRef] [PubMed]
  10. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
    [CrossRef]
  11. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–418 (2002).
    [CrossRef] [PubMed]
  12. B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optics wavefront correction,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J.-A. Conchello, C. J. Cogswell, and T. Wilson eds., Proc. SPIE4964, 24–32 (2003).
  13. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [CrossRef] [PubMed]
  14. E. J. Fernández, S. Manzanera, P. Piers, P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).
  15. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
    [CrossRef]
  16. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
    [CrossRef]
  17. L. Stark, Y. Takahashi, “Absence of an odd-error signal mechanism in human accommodation,” IEEE Trans. Biomed. Eng. 12, 138–146 (1965).
    [CrossRef] [PubMed]
  18. L. M. Smithline, “Accommodative response to blur,” J. Opt. Soc. Am. 64, 1512–1516 (1974).
    [CrossRef] [PubMed]
  19. K. F. Ciuffreda, “Accommodation and its anomalies,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, 1991).
  20. P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sánchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
    [CrossRef] [PubMed]
  21. K. R. Aggarwala, E. S. Kruger, S. Mathews, P. B. Kruger, “Spectral bandwidth and ocular accommodation,” J. Opt. Soc. Am. A 12, 450–455 (1995).
    [CrossRef]
  22. F. W. Campbell, G. Westheimer, “Factors influencing accommodation responses of the human eye,” J. Opt. Soc. Am. 49, 568–571 (1959).
    [CrossRef] [PubMed]
  23. W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
    [CrossRef] [PubMed]
  24. E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 5–80 (1951).
    [CrossRef]
  25. B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19, 833–839 (2002).
    [CrossRef]
  26. P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1400 (2000).
    [CrossRef]
  27. E. J. Fernández, P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
    [CrossRef] [PubMed]
  28. American National Standard Institutes “For the safe use of lasers,” ANSI Z136.1-2000, Laser Institute of America, (Orlando, Fla., 2000).
  29. P. Artal, E. J. Fernández, S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, 563–566 (2002).
  30. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
    [CrossRef]
  31. A. Ivanoff, “About the spherical aberration of the eye,” J. Opt. Soc. Am. 46, 901–903 (1956).
    [CrossRef] [PubMed]
  32. T. C. Jenkins, “Aberrations of the eye and their effects on vision: 1. Spherical aberration,” Br. J. Physiol. Opt. 20, 59–91 (1963).
    [PubMed]
  33. L. Chen, P. B. Kruger, D. R. Williams, “Accommodation without higher order monochromatic aberrations,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 956 (2002).
  34. E. J. Fernández, P. Artal, “Adaptive-optics correction of asymmetric aberrations degrades accommodation,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 954 (2002).

2004 (5)

P. Prieto, E. J. Fernández, S. Manzanera, P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

2003 (1)

2002 (6)

P. Artal, E. J. Fernández, S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, 563–566 (2002).

B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19, 833–839 (2002).
[CrossRef]

L. Chen, P. B. Kruger, D. R. Williams, “Accommodation without higher order monochromatic aberrations,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 956 (2002).

E. J. Fernández, P. Artal, “Adaptive-optics correction of asymmetric aberrations degrades accommodation,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 954 (2002).

E. J. Fernández, S. Manzanera, P. Piers, P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–418 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (1)

1999 (1)

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1993 (1)

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sánchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

1989 (2)

1988 (1)

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

1974 (1)

1965 (1)

L. Stark, Y. Takahashi, “Absence of an odd-error signal mechanism in human accommodation,” IEEE Trans. Biomed. Eng. 12, 138–146 (1965).
[CrossRef] [PubMed]

1963 (1)

T. C. Jenkins, “Aberrations of the eye and their effects on vision: 1. Spherical aberration,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

1959 (1)

1956 (1)

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

1951 (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 5–80 (1951).
[CrossRef]

Aggarwala, K. R.

K. R. Aggarwala, E. S. Kruger, S. Mathews, P. B. Kruger, “Spectral bandwidth and ocular accommodation,” J. Opt. Soc. Am. A 12, 450–455 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sánchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Aragon, J. L.

Artal, P.

P. Prieto, E. J. Fernández, S. Manzanera, P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

E. J. Fernández, P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[CrossRef] [PubMed]

P. Artal, E. J. Fernández, S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, 563–566 (2002).

E. J. Fernández, P. Artal, “Adaptive-optics correction of asymmetric aberrations degrades accommodation,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 954 (2002).

E. J. Fernández, S. Manzanera, P. Piers, P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 1–10 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1400 (2000).
[CrossRef]

F. Vargas-Martín, P. Prieto, P. Artal, “Correction of the aberrations in the human eye with liquid crystal spatial light modulators: limits to the performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[CrossRef]

P. Artal, R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14, 1098–1100 (1989).
[CrossRef] [PubMed]

B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optics wavefront correction,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J.-A. Conchello, C. J. Cogswell, and T. Wilson eds., Proc. SPIE4964, 24–32 (2003).

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Bille, J. F.

Campbell, F. W.

Campbell, M. C. W.

Charman, W. N.

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

Chen, L.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

L. Chen, P. B. Kruger, D. R. Williams, “Accommodation without higher order monochromatic aberrations,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 956 (2002).

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Ciuffreda, K. F.

K. F. Ciuffreda, “Accommodation and its anomalies,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, 1991).

Decker, K. E.

Donnelly, W. J.

Dreher, A. W.

Drexler, W.

Fercher, A. F.

Fernández, E. J.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

P. Prieto, E. J. Fernández, S. Manzanera, P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

E. J. Fernández, P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[CrossRef] [PubMed]

P. Artal, E. J. Fernández, S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, 563–566 (2002).

E. J. Fernández, P. Artal, “Adaptive-optics correction of asymmetric aberrations degrades accommodation,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 954 (2002).

E. J. Fernández, S. Manzanera, P. Piers, P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

Fincham, E. F.

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 5–80 (1951).
[CrossRef]

Goelz, S.

Hebert, T. J.

Hermann, B.

Heron, G.

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

Hofer, H.

Iglesias, I.

E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optics wavefront correction,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J.-A. Conchello, C. J. Cogswell, and T. Wilson eds., Proc. SPIE4964, 24–32 (2003).

Ivanoff, A.

Jenkins, T. C.

T. C. Jenkins, “Aberrations of the eye and their effects on vision: 1. Spherical aberration,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Kruger, E. S.

Kruger, P. B.

L. Chen, P. B. Kruger, D. R. Williams, “Accommodation without higher order monochromatic aberrations,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 956 (2002).

K. R. Aggarwala, E. S. Kruger, S. Mathews, P. B. Kruger, “Spectral bandwidth and ocular accommodation,” J. Opt. Soc. Am. A 12, 450–455 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sánchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Liang, J.

Manzanera, S.

P. Prieto, E. J. Fernández, S. Manzanera, P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

P. Artal, E. J. Fernández, S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, 563–566 (2002).

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Mathews, S.

K. R. Aggarwala, E. S. Kruger, S. Mathews, P. B. Kruger, “Spectral bandwidth and ocular accommodation,” J. Opt. Soc. Am. A 12, 450–455 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sánchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Miller, D.

Navarro, R.

Norrby, S.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

Piers, P.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

Prieto, P.

Prieto, P. M.

Queener, H.

Romero-Borja, F.

Roorda, A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19, 833–839 (2002).
[CrossRef]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–418 (2002).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

Sánchez, N.

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sánchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Sattmann, H.

Singer, B.

Smithline, L. M.

Stark, L.

L. Stark, Y. Takahashi, “Absence of an odd-error signal mechanism in human accommodation,” IEEE Trans. Biomed. Eng. 12, 138–146 (1965).
[CrossRef] [PubMed]

Takahashi, Y.

L. Stark, Y. Takahashi, “Absence of an odd-error signal mechanism in human accommodation,” IEEE Trans. Biomed. Eng. 12, 138–146 (1965).
[CrossRef] [PubMed]

Unterhuber, A.

Vargas-Martín, F.

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Vohnsen, B.

B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optics wavefront correction,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J.-A. Conchello, C. J. Cogswell, and T. Wilson eds., Proc. SPIE4964, 24–32 (2003).

Weinreb, R. N.

Westheimer, G.

Williams, D. R.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

L. Chen, P. B. Kruger, D. R. Williams, “Accommodation without higher order monochromatic aberrations,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 956 (2002).

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 1–10 (2001).
[CrossRef]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

J. Liang, D. R. Williams, D. Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

Wilson, B. J.

Yamauchi, Y.

Yoon, G. Y.

Appl. Opt. (1)

Br. J. Ophthamol. (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 5–80 (1951).
[CrossRef]

Br. J. Physiol. Opt. (1)

T. C. Jenkins, “Aberrations of the eye and their effects on vision: 1. Spherical aberration,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

IEEE Trans. Biomed. Eng. (1)

L. Stark, Y. Takahashi, “Absence of an odd-error signal mechanism in human accommodation,” IEEE Trans. Biomed. Eng. 12, 138–146 (1965).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, “Adaptive optics simulation for intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

L. Chen, P. B. Kruger, D. R. Williams, “Accommodation without higher order monochromatic aberrations,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 956 (2002).

E. J. Fernández, P. Artal, “Adaptive-optics correction of asymmetric aberrations degrades accommodation,” Invest. Ophthalmol. Visual Sci. Suppl. 43, 954 (2002).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (6)

J. Refract. Surg. (2)

P. Artal, E. J. Fernández, S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, 563–566 (2002).

E. J. Fernández, S. Manzanera, P. Piers, P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

J. Vision (2)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Nature (London) (1)

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Vision Res. (1)

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sánchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Other (3)

American National Standard Institutes “For the safe use of lasers,” ANSI Z136.1-2000, Laser Institute of America, (Orlando, Fla., 2000).

B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optics wavefront correction,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J.-A. Conchello, C. J. Cogswell, and T. Wilson eds., Proc. SPIE4964, 24–32 (2003).

K. F. Ciuffreda, “Accommodation and its anomalies,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental apparatus. A pigtailed near infrared laser is used as the beacon source for the eye. A Hartmann–Shack (H-S) wavefront sensor measures the ocular aberrations in real time ( 25 Hz ) . The deformable mirror modifies the ocular aberrations in closed-loop. During the measurements the apparatus allows the subject to view visual stimuli simultaneously. The motorized optometer can generate abrupt changes in defocus, inducing accommodation in the subject.

Fig. 2
Fig. 2

Evolution of the average RMS of the ocular aberrations for subjects PA and SM during accommodation in a 5.52 mm pupil. Experimental data are shifted in the temporal axis to perform the average, so that the origin in this axis matches the exact starting point for the induced changes in the defocus. Triangles, RMS when the accommodation is performed under natural viewing conditions (natural aberrations); squares, closed-loop asymmetric-aberration correction.

Fig. 3
Fig. 3

Average ocular aberrations (modulus- 2 π representation) for subject PA before and during the induced 1.5 D accommodation in a 5.52 mm pupil. (a) The natural case shows the measured aberrations when the subject performs the accommodation under natural viewing conditions. (b) The corrected case presents the aberrations when the asymmetric aberrations are corrected. In both cases the associated PSFs are shown together with the estimated Strehl ratios. The tilt terms and defocus are not included in the aberrations maps.

Fig. 4
Fig. 4

Average ocular aberrations (modulus- 2 π representation) for subject SM before and during the induced 2.0 D accommodation in a 5.52 mm pupil. (a) and (b) as in Fig. 3.

Fig. 5
Fig. 5

Average ocular aberrations, excluding defocus and tilt, in subject PA before (white bars) and during (shaded bars) the 1.5 D induced accommodation for both the natural and the corrected cases. The aberrations are expressed in terms of the Zernike polynomial expansion following the OSA standard ordering.

Fig. 6
Fig. 6

Average ocular aberrations, excluding defocus and tilt, in subject SM before (white bars) (shaded bars) and during the 2 D induced accommodation for both the natural and the corrected cases.

Fig. 7
Fig. 7

Accommodation response as a function of time for subject PA induced by a 1.5 D abrupt change in defocus (circles). The data are shifted so that the value 0 in time matches the origin of the change of defocus. The thick solid line represents the ideal final accommodation ( 1.5 D ) . The thin solid curve shows the sigmoidal fit obtained from the experimental data. The dashed curve shows the velocity of the accommodation (in diopters per second), calculated as the first derivative of the estimated sigmoidal function.

Fig. 8
Fig. 8

Accommodation responses in subject PA under natural viewing conditions (top) and with asymmetric aberration correction (bottom). The programmed step change in defocus was 1.5 D . The experimental data are shifted on the temporal axis so that the zero value corresponds to the beginning of the defocus change.

Fig. 9
Fig. 9

Accommodation responses in subject SM under natural viewing conditions (top) and in the corrected case (bottom). The induced change in defocus was 2.0 D .

Fig. 10
Fig. 10

Average results from the accommodation responses in the two subjects. In the left panel, the bars show the finally achieved accommodation with natural aberrations (gray) and with asymmetric-aberration correction (white). The right panel shows the latency time in the two cases. The error bars represent the standard deviation.

Fig. 11
Fig. 11

Response time with natural aberrations (left panel, gray) and with asymmetric-aberration correction (white). The right panel shows the accommodation velocity in the two cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y = A 1 A 2 1 + exp [ ( x x 0 ) d x ] + A 2 ,

Metrics