Abstract

We show that gratings can be designed to be symmetry selective, that is, reflecting modes with a particular symmetry. The idea behind a symmetry-selective grating is to replace a grating written over the entire core cross section of a waveguide with a grating that is written only over a part of the core. This new kind of grating exhibits high-order reflectivity and selectivity in comparison with standard gratings and enables the design of more effective and compact wavelength add/drop devices.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  2. A. S. Kewitsch, G. A. Rakuljic, A. Yariv, “Wavelength selective grating assisted optical couplers,” International patent WO 97/08574 (March 6, 1997).
  3. M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42, 6578–6583 (2003).
    [CrossRef] [PubMed]
  4. G. Perrone, M. Laurenzano, I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” J. Lightwave Technol. 19, 1943–1948 (2001).
    [CrossRef]
  5. K. W. Gaff, F. Ladouceur, J. D. Love, “Two-wavelength planar add/drop WDM filter employing a three-mode coupling Bragg grating,” Electron. Lett. 36, 1142–1144 (2000).
    [CrossRef]
  6. S. Tomljenovic-Hanic, J. D. Love, “Planar waveguide add/drop wavelength filters based on segmented gratings,” Microwave Opt. Technol. Lett. 37, 163–165 (2003).
    [CrossRef]
  7. S. Tomljenovic-Hanic, “Symmetry-selecting gratings and their applications,” in Proceedings of 5th International Conference on Transparent Optical Networks, M. Marciniak, ed. (IEEE Press, 2003), pp. 196–199.
  8. S. Tomljenovic-Hanic, J. D. Love, R. B. Charters, “Cut-off wavelength and transient effects in asymmetrically clad single-mode buried-channel waveguides,” IEE Proc.: Optoelectron. 149, 51–57 (2002).
  9. A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, 1983), pp. 177–201.

2003 (2)

M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42, 6578–6583 (2003).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, J. D. Love, “Planar waveguide add/drop wavelength filters based on segmented gratings,” Microwave Opt. Technol. Lett. 37, 163–165 (2003).
[CrossRef]

2002 (1)

S. Tomljenovic-Hanic, J. D. Love, R. B. Charters, “Cut-off wavelength and transient effects in asymmetrically clad single-mode buried-channel waveguides,” IEE Proc.: Optoelectron. 149, 51–57 (2002).

2001 (1)

2000 (1)

K. W. Gaff, F. Ladouceur, J. D. Love, “Two-wavelength planar add/drop WDM filter employing a three-mode coupling Bragg grating,” Electron. Lett. 36, 1142–1144 (2000).
[CrossRef]

Åslund, M.

Canning, J.

Charters, R. B.

S. Tomljenovic-Hanic, J. D. Love, R. B. Charters, “Cut-off wavelength and transient effects in asymmetrically clad single-mode buried-channel waveguides,” IEE Proc.: Optoelectron. 149, 51–57 (2002).

de Sterke, C. M.

Gaff, K. W.

K. W. Gaff, F. Ladouceur, J. D. Love, “Two-wavelength planar add/drop WDM filter employing a three-mode coupling Bragg grating,” Electron. Lett. 36, 1142–1144 (2000).
[CrossRef]

Judge, A.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kewitsch, A. S.

A. S. Kewitsch, G. A. Rakuljic, A. Yariv, “Wavelength selective grating assisted optical couplers,” International patent WO 97/08574 (March 6, 1997).

Ladouceur, F.

K. W. Gaff, F. Ladouceur, J. D. Love, “Two-wavelength planar add/drop WDM filter employing a three-mode coupling Bragg grating,” Electron. Lett. 36, 1142–1144 (2000).
[CrossRef]

Laurenzano, M.

Love, J. D.

S. Tomljenovic-Hanic, J. D. Love, “Planar waveguide add/drop wavelength filters based on segmented gratings,” Microwave Opt. Technol. Lett. 37, 163–165 (2003).
[CrossRef]

S. Tomljenovic-Hanic, J. D. Love, R. B. Charters, “Cut-off wavelength and transient effects in asymmetrically clad single-mode buried-channel waveguides,” IEE Proc.: Optoelectron. 149, 51–57 (2002).

K. W. Gaff, F. Ladouceur, J. D. Love, “Two-wavelength planar add/drop WDM filter employing a three-mode coupling Bragg grating,” Electron. Lett. 36, 1142–1144 (2000).
[CrossRef]

Montrosset, I.

Perrone, G.

Poladian, L.

Rakuljic, G. A.

A. S. Kewitsch, G. A. Rakuljic, A. Yariv, “Wavelength selective grating assisted optical couplers,” International patent WO 97/08574 (March 6, 1997).

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, J. D. Love, “Planar waveguide add/drop wavelength filters based on segmented gratings,” Microwave Opt. Technol. Lett. 37, 163–165 (2003).
[CrossRef]

S. Tomljenovic-Hanic, J. D. Love, R. B. Charters, “Cut-off wavelength and transient effects in asymmetrically clad single-mode buried-channel waveguides,” IEE Proc.: Optoelectron. 149, 51–57 (2002).

S. Tomljenovic-Hanic, “Symmetry-selecting gratings and their applications,” in Proceedings of 5th International Conference on Transparent Optical Networks, M. Marciniak, ed. (IEEE Press, 2003), pp. 196–199.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, 1983), pp. 177–201.

A. S. Kewitsch, G. A. Rakuljic, A. Yariv, “Wavelength selective grating assisted optical couplers,” International patent WO 97/08574 (March 6, 1997).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, 1983), pp. 177–201.

Appl. Opt. (1)

Electron. Lett. (1)

K. W. Gaff, F. Ladouceur, J. D. Love, “Two-wavelength planar add/drop WDM filter employing a three-mode coupling Bragg grating,” Electron. Lett. 36, 1142–1144 (2000).
[CrossRef]

IEE Proc.: Optoelectron. (1)

S. Tomljenovic-Hanic, J. D. Love, R. B. Charters, “Cut-off wavelength and transient effects in asymmetrically clad single-mode buried-channel waveguides,” IEE Proc.: Optoelectron. 149, 51–57 (2002).

J. Lightwave Technol. (1)

Microwave Opt. Technol. Lett. (1)

S. Tomljenovic-Hanic, J. D. Love, “Planar waveguide add/drop wavelength filters based on segmented gratings,” Microwave Opt. Technol. Lett. 37, 163–165 (2003).
[CrossRef]

Other (4)

S. Tomljenovic-Hanic, “Symmetry-selecting gratings and their applications,” in Proceedings of 5th International Conference on Transparent Optical Networks, M. Marciniak, ed. (IEEE Press, 2003), pp. 196–199.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, 1983), pp. 177–201.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. S. Kewitsch, G. A. Rakuljic, A. Yariv, “Wavelength selective grating assisted optical couplers,” International patent WO 97/08574 (March 6, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of (a) an antisymmetric grating and (b) a symmetric grating.

Fig. 2
Fig. 2

(a) Cross section of the waveguide, (b) index profile of antisymmetric and symmetric gratings.

Fig. 3
Fig. 3

Transmittance of the fundamental mode through an antisymmetric grating as a function of (a) grating length and (b) index modulation.

Fig. 4
Fig. 4

Transmittance spectra for coupling from the forward-propagating fundamental mode into the first backward-propagating odd mode (solid curve) and the second backward-propagating odd mode (dotted curve) for a 1 - cm -long antisymmetric grating with index modulation of 0.002.

Fig. 5
Fig. 5

Coupling coefficient of the forward-propagating fundamental mode into the backward-propagating fundamental mode (solid curve) and the second backward-propagating even mode (dotted curve) as a function of the width, 2 s , of the central grating region for a symmetric grating.

Fig. 6
Fig. 6

Reflectivity of the first two even modes as a function of the wavelength and width of the centrally located grating.

Fig. 7
Fig. 7

Transmittance spectra for coupling from the forward-propagating fundamental mode into the backward-propagating fundamental mode (solid curves) and the second backward-propagating even mode (dotted curves) for a 1 - cm -long symmetric grating with index modulation of 0.002. The inner grating dimensions are (a) 2 s = 19 μ m , (b) 2 s = 9 μ m .

Metrics