Abstract

A study of the optical properties of microfabricated, fully-metal-coated quartz probes collecting longitudinal and transverse optical fields is presented. The measurements are performed by raster scanning the focal plane of an objective, focusing azimuthally and radially polarized beams by use of two metal-coated quartz probes with different metal coatings. A quantitative estimation of the collection efficiencies and spatial resolutions in imaging both longitudinal and transverse fields is made. Longitudinally polarized fields are collected with a resolution approximately 1.5 times higher as compared with transversely polarized fields, and this behavior is almost independent of the roughness of the probe’s metal coating. Moreover, the coating roughness is a critical parameter in the relative collection efficiency of the two field orientations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Wickramasinghe, C. C. Williams, “Apertureless near field optical microscope,” U.S. patent 4,947,034 (April 28, 1989).
  2. F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [CrossRef]
  3. A. Bouhelier, M. R. Beversluis, L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
    [CrossRef]
  4. E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
    [CrossRef]
  5. G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
    [CrossRef]
  6. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
    [CrossRef]
  7. L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
    [CrossRef]
  8. L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
    [CrossRef]
  9. A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002).
    [CrossRef]
  10. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
    [CrossRef]
  11. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [CrossRef] [PubMed]
  12. M. A. Lieb, A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8, 458–474 (2001).
    [CrossRef] [PubMed]
  13. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  14. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
    [CrossRef]
  15. Z. Bomzom, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1598 (2001).
    [CrossRef]
  16. Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
    [CrossRef]
  17. M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef] [PubMed]
  18. M. Stalder, M. Schadt, “Polarisation converters based on liquid crystal devices,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282, 343–353 (1996).
  19. S. Masuda, T. Nose, R. Yamaguchi, S. Sato, “Polarization-converting devices using a UV curable liquid crystal,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE2873, 301–304 (1996).
  20. C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90  degrees,” J. Phys. D 8, 1575–1584 (1975).
    [CrossRef]
  21. M. Schadt, W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–129 (1971).
    [CrossRef]
  22. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941).
    [CrossRef]
  23. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3, 2086–2093 (1986).
    [CrossRef]
  24. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989).
    [CrossRef]
  25. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives: erratum. Certain computational aspects of vector diffraction problems: erratum,” J. Opt. Soc. Am. A 10, 382–383 (1993).
    [CrossRef]
  26. T. Grosjean, D. Courjon, “Polarization filtering by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
    [CrossRef]
  27. R. H. Jordan, D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
    [CrossRef] [PubMed]
  28. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11 (1995).
    [CrossRef]
  29. L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
    [CrossRef] [PubMed]
  30. M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla., 1997).
  31. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. M. Gösele, U. Gösele, R. B. Wehspohn, J. Mlynek, V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
    [CrossRef] [PubMed]

2004 (2)

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. M. Gösele, U. Gösele, R. B. Wehspohn, J. Mlynek, V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[CrossRef] [PubMed]

2003 (6)

A. Bouhelier, M. R. Beversluis, L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

T. Grosjean, D. Courjon, “Polarization filtering by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002).
[CrossRef]

Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

2001 (3)

2000 (3)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef] [PubMed]

1998 (1)

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

1996 (2)

M. Stalder, M. Schadt, “Polarisation converters based on liquid crystal devices,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282, 343–353 (1996).

M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (2)

R. H. Jordan, D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
[CrossRef] [PubMed]

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

1993 (1)

1989 (1)

1986 (1)

1975 (1)

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90  degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

1971 (1)

M. Schadt, W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–129 (1971).
[CrossRef]

1941 (1)

Aeschimann, L.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

Akiyama, T.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002).
[CrossRef]

Biener, G.

Birner, A.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Bomzom, Z.

Z. Bomzom, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1598 (2001).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002).
[CrossRef]

Brown, T. G.

Courjon, D.

T. Grosjean, D. Courjon, “Polarization filtering by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Dändliker, R.

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

de Rooij, N. F.

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
[CrossRef]

de Rooji, N. F.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Descrovi, E.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Eckert, R.

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Freyland, J. M.

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Gersen, H.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Gooch, C. H.

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90  degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Gösele, F. M.

Gösele, U.

Grosjean, T.

T. Grosjean, D. Courjon, “Polarization filtering by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Hall, D. G.

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

Z. Bomzom, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1598 (2001).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Heinzelmann, H.

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Helfrich, W.

M. Schadt, W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–129 (1971).
[CrossRef]

Herzig, H. P.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

Jones, R. C.

Jordan, R. H.

Kafesaki, M.

Kleiner, V.

Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

Z. Bomzom, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1598 (2001).
[CrossRef]

Kramper, P.

Leuchs, G.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Lieb, M. A.

Madou, M.

M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla., 1997).

Mansuripur, M.

Masuda, S.

S. Masuda, T. Nose, R. Yamaguchi, S. Sato, “Polarization-converting devices using a UV curable liquid crystal,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE2873, 301–304 (1996).

Meixner, A. J.

Mlynek, J.

Nakagawa, W.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

Noell, W.

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Nose, T.

S. Masuda, T. Nose, R. Yamaguchi, S. Sato, “Polarization-converting devices using a UV curable liquid crystal,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE2873, 301–304 (1996).

Novotny, L.

A. Bouhelier, M. R. Beversluis, L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002).
[CrossRef]

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Renger, J.

A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002).
[CrossRef]

Sanchez, E. J.

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Sandoghdar, V.

Sato, S.

S. Masuda, T. Nose, R. Yamaguchi, S. Sato, “Polarization-converting devices using a UV curable liquid crystal,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE2873, 301–304 (1996).

Schadt, M.

M. Stalder, M. Schadt, “Polarisation converters based on liquid crystal devices,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282, 343–353 (1996).

M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
[CrossRef] [PubMed]

M. Schadt, W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–129 (1971).
[CrossRef]

Schürmann, G.

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Soukoulis, C. M.

Stalder, M.

M. Stalder, M. Schadt, “Polarisation converters based on liquid crystal devices,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282, 343–353 (1996).

M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
[CrossRef] [PubMed]

Staufer, U.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Tarry, H. A.

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90  degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Thiery, L.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

Vaccaro, L.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

Wehspohn, R. B.

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

H. K. Wickramasinghe, C. C. Williams, “Apertureless near field optical microscope,” U.S. patent 4,947,034 (April 28, 1989).

Williams, C. C.

H. K. Wickramasinghe, C. C. Williams, “Apertureless near field optical microscope,” U.S. patent 4,947,034 (April 28, 1989).

Xie, X. S.

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Yamaguchi, R.

S. Masuda, T. Nose, R. Yamaguchi, S. Sato, “Polarization-converting devices using a UV curable liquid crystal,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE2873, 301–304 (1996).

Youngworth, K. S.

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

AIP Conf. Proc. (1)

L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

A. Bouhelier, M. R. Beversluis, L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Z. Bomzom, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1598 (2001).
[CrossRef]

M. Schadt, W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–129 (1971).
[CrossRef]

J. Microsc. (2)

A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. D (1)

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90  degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (1)

M. Stalder, M. Schadt, “Polarisation converters based on liquid crystal devices,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282, 343–353 (1996).

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. E (1)

T. Grosjean, D. Courjon, “Polarization filtering by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Ultramicroscopy (1)

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Other (3)

H. K. Wickramasinghe, C. C. Williams, “Apertureless near field optical microscope,” U.S. patent 4,947,034 (April 28, 1989).

S. Masuda, T. Nose, R. Yamaguchi, S. Sato, “Polarization-converting devices using a UV curable liquid crystal,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE2873, 301–304 (1996).

M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Images of the incoming laser beam after passing through the θ cell, producing (a) an uncompensated radially polarized and (b) an uncompensated azimuthally polarized beam. Also note the presence of the defect line due to the destructive interference of the opposing polarization orientations in the two halves of the beam, as indicated schematically by the arrows.

Fig. 2
Fig. 2

Measured focal-plane images of uncompensated axially symmetric beams focused by a NA = 0.65 objective. Azimuthally polarized beam: (a) total intensity, (b) intensity of the field x component, (c) intensity of the field y component. Radially polarized beam: (d) total transverse field intensity, (e) intensity of the field x component, (f) intensity of the field y component.

Fig. 3
Fig. 3

Schematic drawing of the LiC elements generating axially symmetric polarized beams.

Fig. 4
Fig. 4

Measured focal-plane images of compensated axially symmetric beams focused by a NA = 0.65 objective. Azimuthally polarized beam: (a) total intensity, (b) intensity of the field x component, (c) intensity of the field y component. Radially polarized beam: (d) total transverse field intensity, (e) intensity of the field x component, (f) intensity of the field y component.

Fig. 5
Fig. 5

Calculated patterns of uncompensated axially symmetric polarized beams produced by an ideal θ cell, in the focal plane of a NA = 0.65 lens. Azimuthally polarized beam: (a) total intensity, (b) intensity of the field x component, (c) intensity of the field y component (the z component is zero). Radially polarized beam: (d) total transverse field intensity, (e) intensity of the field x component, (f) intensity of the field y component, (g) intensity of the field z component.

Fig. 6
Fig. 6

Calculated patterns of compensated axially symmetric polarized beams produced by an ideal θ cell and focused with a NA = 0.65 lens. Azimuthally polarized beam: (a) total intensity, (b) intensity of the field x component, (c) intensity of the field y component (the z component is zero). Radially polarized beam: (d) total transverse field intensity, (e) intensity of the field x component, (f) intensity of the field y component, (g) intensity of the field z component.

Fig. 7
Fig. 7

Working principle of the SNOM used in the experiment. PMT, photomultiplier tube.

Fig. 8
Fig. 8

Transmission electron microscope image of a SiO 2 tip coated with aluminum in the step-coverage mode (the standard probe).

Fig. 9
Fig. 9

Intensity distribution of a focused compensated (a) azimuthally polarized beam and (b) radially polarized beam scanned by the SNOM with a standard probe.

Fig. 10
Fig. 10

Intensity profile of a compensated focused azimuthally polarized beam. The curves show the measured data I azi (diamonds), the theoretical distribution I T (dotted curve), and the convolution I T f T , with σ T = 153 nm (solid curve). The measured profile is taken along the dashed line shown in Fig. 9a.

Fig. 11
Fig. 11

Intensity profile of a compensated focused radially polarized beam. The curves show the measured data (diamonds), the theoretical distribution I T + I L (dotted curve), and the weighted sum of the convolved distributions I T f T + C ( I L f L ) , with C = 0.273 (solid curve). The measured profile is taken along the dashed line shown in Fig. 9b.

Fig. 12
Fig. 12

Transmission electron microscope image of the apex of a SiO 2 tip coated with aluminum in the normal mode (the rough probe).

Fig. 13
Fig. 13

Intensity distribution of a focused compensated (a) azimuthally polarized beam and (b) radially polarized beam as imaged by the SNOM with a rough probe.

Fig. 14
Fig. 14

Intensity profile of a compensated focused azimuthally polarized beam. The curves show the measured data I rad (diamonds), the theoretical distribution I T (dotted curve), and the convolution I T f T , with σ T = 151 nm (solid curve). The measured profile is taken along the dashed line shown in Fig. 13a.

Fig. 15
Fig. 15

Intensity profile of a compensated focused radially polarized beam. The curves show the measured data I rad (diamonds), the theoretical distribution I L (dotted curve), and the convolution I L f L , with σ L = 117 nm (solid curve). The measured profile is taken along the dashed line shown in Fig. 13b.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J P = [ cos ( P θ + ϕ 0 ) sin ( P θ + ϕ 0 ) ] , P = 1 , 2 , 3 , .

Metrics