Abstract

We present a comprehensive study of multiple-scattering effects in wide-field optical coherence tomography (OCT) realized with spatially coherent illumination. Imaging a sample made of a cleaved mirror embedded in an aqueous suspension of microspheres revealed that, despite temporal coherence gating, multiple scattering can induce significant coherent optical cross talk. The latter is a serious limitation to the method, since it prevents shot-noise-limited detection and diffraction-limited imaging in scattering samples. We investigate the dependence of cross talk on important system design parameters, as well as on some relevant sample properties. The agreement between theoretical and experimental results for the wide range of parameters investigated was very good, in both the lateral and the axial dimensions. This further confirms the validity of the model developed in our companion paper [J. Opt. Soc. Am. A 22, 1369–1379 (2005) ].

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22, 1369–1379 (2005).
    [Crossref]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [Crossref]
  3. M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. P. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 9, 429–435 (2002).
    [Crossref]
  4. L. Vabre, A. Dubois, A. C. Boccara, “Thermal full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
    [Crossref]
  5. M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
    [Crossref]
  6. E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberlé, C. Ruillère, “Real-time two-dimensional imaging in scattering media by use of a femtosecond Cr4+: forsterite laser,” Opt. Lett. 25, 929–931 (2000).
    [Crossref]
  7. B. Karamata, M. Laubscher, P. Lambelet, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004).
    [Crossref] [PubMed]
  8. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
    [Crossref] [PubMed]
  9. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
    [Crossref]
  10. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
    [Crossref] [PubMed]
  11. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
    [Crossref]
  12. H. J. Van Staveren, C. J. Moes, M. J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [Crossref] [PubMed]
  13. W.-F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  14. J. M. Schmitt, A. Küettel, R. F. Bonner, “Measurement of optical properties of biological tissues in low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [Crossref] [PubMed]
  15. M. J. Yadlowsky, J. M. Schmitt, R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995).
    [Crossref] [PubMed]
  16. K. K. Bizheva, A. M. Siegel, D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
    [Crossref]
  17. D. J. Faber, F. J. van der Meer, M. C. Aalders, T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
    [Crossref] [PubMed]
  18. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, “Determination of optical scattering properties of highly scattering media in optical coherence tomography,” Opt. Express 12, 249–259 (2004).
    [Crossref] [PubMed]
  19. A. F. Zuluaga, R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24, 519–521 (1999).
    [Crossref]
  20. J. C. Hebden, R. A. Kruger, K. S. Song, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [Crossref] [PubMed]
  21. A. Serov, W. Steenbergen, F. de Mul, “Laser Doppler perfusion imaging with a complementary metal oxide semiconductor image sensor,” Opt. Lett. 27, 300–302 (2002).
    [Crossref]

2005 (1)

2004 (3)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

2002 (4)

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. P. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 9, 429–435 (2002).
[Crossref]

L. Vabre, A. Dubois, A. C. Boccara, “Thermal full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
[Crossref]

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

A. Serov, W. Steenbergen, F. de Mul, “Laser Doppler perfusion imaging with a complementary metal oxide semiconductor image sensor,” Opt. Lett. 27, 300–302 (2002).
[Crossref]

2000 (2)

E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberlé, C. Ruillère, “Real-time two-dimensional imaging in scattering media by use of a femtosecond Cr4+: forsterite laser,” Opt. Lett. 25, 929–931 (2000).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

1999 (2)

A. F. Zuluaga, R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24, 519–521 (1999).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

1998 (1)

K. K. Bizheva, A. M. Siegel, D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

1995 (2)

1993 (1)

1991 (3)

1990 (1)

W.-F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Aalders, M. C.

Abraham, E.

Andersen, P. E.

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

Boas, D. A.

K. K. Bizheva, A. M. Siegel, D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

Boccara, A. C.

Bonner, R. F.

Boppart, S. A.

Bordenave, E.

Bouma, B.

Bourquin, S.

B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22, 1369–1379 (2005).
[Crossref]

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

Brezinski, M. E.

Chen, H.

Chen, Y.

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

de Mul, F.

Dilworth, D.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

Dubois, A.

Ducros, M.

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. P. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 9, 429–435 (2002).
[Crossref]

Ducros, M. G.

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

Faber, D. J.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

Frosz, M. H.

Fujimoto, J. G.

Hebden, J. C.

Hee, M. R.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

Jonusauskas, G.

Karamata, B.

B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22, 1369–1379 (2005).
[Crossref]

B. Karamata, M. Laubscher, P. Lambelet, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004).
[Crossref] [PubMed]

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. P. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 9, 429–435 (2002).
[Crossref]

Kruger, R. A.

Küettel, A.

Lambelet, P.

Lasser, T.

B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22, 1369–1379 (2005).
[Crossref]

B. Karamata, M. Laubscher, P. Lambelet, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. P. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 9, 429–435 (2002).
[Crossref]

Laubscher, M.

B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22, 1369–1379 (2005).
[Crossref]

B. Karamata, M. Laubscher, P. Lambelet, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004).
[Crossref] [PubMed]

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. P. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 9, 429–435 (2002).
[Crossref]

Leitgeb, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

Leith, E.

Leutenegger, M.

Levitz, D.

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

Lopez, J.

Masri, R.

Moes, C. J.

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

Oberlé, J.

Prahl, S. A.

H. J. Van Staveren, C. J. Moes, M. J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[Crossref] [PubMed]

W.-F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Richards-Kortum, R.

Rudd, J.

Ruillère, C.

Salathé, R. P.

B. Karamata, M. Laubscher, P. Lambelet, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004).
[Crossref] [PubMed]

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. P. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 9, 429–435 (2002).
[Crossref]

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

Schmitt, J. M.

Serov, A.

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

Song, K. S.

Steenbergen, W.

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

Tearney, G. J.

Thrane, L.

Tsurumachi, N.

Vabre, L.

Valdmanis, J.

van der Meer, F. J.

van Gemert, M. J. C.

van Leeuwen, T. G.

van Marle, M. J.

Van Staveren, H. J.

Welsh, A. J.

W.-F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Yadlowsky, M. J.

Zuluaga, A. F.

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

J. Mod. Opt. (1)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

M. G. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–65 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. E (1)

K. K. Bizheva, A. M. Siegel, D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme of a wide-field OCT setup. The source is either a superluminescent diode or a pulsed Ti:sapphire laser: single-mode fiber (SF); reference mirror (RM); voice coil scanner (S); achromatic lenses ( L 1 , L 2 , and L 4 ); microscope objective × 10 , NA = 0.25 ( L 3 and L 3 ); translating stage (TS); 50 - μ m -core optical fiber (OF); photodiode (PD); preamplifier (A); data acquisition card (DAQ); personal computer (PC). Details of the signal processing are given in the text.

Fig. 2
Fig. 2

Scheme of the interferometer sample arm showing optical cross talk in wide-field OCT: wide-field diameter ( D ) , ideal probe volume ( P b ) , virtual probe volume ( P a ) , backscattering object (BO), Rayleigh range ( l R ) , axial resolution ( z c ) , forward multiple scattered light backscattered from BO ( MSL 1 ), multiply scattered light backscattered from the scattering medium alone ( MSL 2 ).

Fig. 3
Fig. 3

Envelopes of the source autocorrelation function measured with the mode-locked femtosecond Ti:sapphire laser: in water with the wide-field configuration (solid curve) and in scattering solution ( 8 OD , g = 0.85 ) with the confocal configuration (dashed curve).

Fig. 4
Fig. 4

Cross-section wide-field OCT image of a cleaved mirror with the edge break on the optical axis ( O A ) : (a) in water; (b) in scattering solution ( 8 OD , g = 093 ) ; I ( x ) , projection of the maximum intensity profile.

Fig. 5
Fig. 5

Experimental (Exp) and theoretical (Model) results obtained in wide-field OCT for various wide-field diameters ( D ) with OD = 8 , g = 0.85 , and NA = 0.25 : (a) correlogram envelopes for the full-mirror sample and envelope of the source autocorrelation function (ACF) are given for reference; (b) projections of the maximum intensity profiles obtained with the half-mirror sample and the corresponding profile in water is given for reference (Edge).

Fig. 6
Fig. 6

Experimental (Exp) and theoretical (Model) results obtained in wide-field OCT with the full-mirror sample for various NA with OD = 8 , g = 0.85 , and D = 420 μ m . The envelope of the source autocorrelation function (ACF) is given for reference. The inset shows a magnified view of the curves in front of the mirror.

Fig. 7
Fig. 7

Experimental (Exp) and theoretical (Model) results obtained in wide-field OCT for an SLD (coherence length l c 1 = 34 μ m ) and for a mode-locked femtosecond Ti:sapphire laser ( l c 2 = 15 μ m ) with OD = 8 , g = 0.85 , D = 420 μ m , and NA = 0.25 : (a) correlogram envelopes for the full-mirror sample and envelopes of the two source autocorrelation functions (ACF) are given for reference; (b) projections of the maximum intensity profiles obtained with the half-mirror sample and the corresponding profile in water is given for reference (Edge). The inset shows a magnified view of the curves in front of the mirror for the full-mirror sample. Bullets are used to highlight the experimental curve for l c 2 .

Fig. 8
Fig. 8

Experimental (Exp) and theoretical (Model) results obtained in wide-field OCT for various anisotropies ( g ) with OD = 8 , D = 420 μ m , and NA = 0.25 : (a) correlogram envelopes for the full-mirror sample and envelope of the source autocorrelation function (ACF) are given for reference; (b) projections of maximum intensity profiles obtained with the half-mirror sample and the corresponding profile in water are given for reference (Edge).

Fig. 9
Fig. 9

Experimental (Exp) and theoretical (Model) results obtained in wide-field OCT for various ODs with μ S = 6.2 mm 1 , g = 0.85 , D = 420 μ m , and NA = 0.25 : (a) correlogram envelopes for the full-mirror sample and envelope of the source autocorrelation function (ACF) are given for reference; (b) projections of the maximum intensity profile are obtained with the half-mirror sample and the corresponding profile in water are given for reference (Edge).

Fig. 10
Fig. 10

Maximum intensities of OCT signals obtained with the full-mirror sample for μ S = 6.2 mm 1 versus sample thickness for different anisotropies ( g ) and configurations. The decrease in intensity, for wide-field configuration (Wf) with D = 420 μ m , NA = 0.25 , and confocal configuration (Cf) with NA = 0.25 , are compared with the exponential decrease predicted by the Lambert–Beer law (Theory). Linear fits are illustrated for all cases. (a) Experimental results. (b) Theoretical results obtained with our model.

Metrics