Abstract

We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental model or some other model with a deterministic functional form. The method extends our previous work in fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimization, which is closely related to Gauss–Seidel methods. We demonstrate the method with a simulation study.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. J. Radiol. 13, 195–208 (2003).
  2. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
    [CrossRef] [PubMed]
  3. J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
    [CrossRef]
  4. U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
    [CrossRef] [PubMed]
  5. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
    [CrossRef] [PubMed]
  6. J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
    [CrossRef] [PubMed]
  7. E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).
  8. W. R. Potter, D. A. Bellnier, T. J. Dougherty, “Optical methods for in-vivo pharmacokinetics,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. SPIE1645, 166–170 (1992).
  9. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
    [CrossRef] [PubMed]
  11. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
    [CrossRef] [PubMed]
  12. R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
    [CrossRef] [PubMed]
  13. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, O. Nalcioglu, “ In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
    [CrossRef] [PubMed]
  14. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  15. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
    [CrossRef] [PubMed]
  16. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  17. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
    [CrossRef] [PubMed]
  18. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  19. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [CrossRef]
  20. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001).
    [CrossRef] [PubMed]
  21. V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003).
    [CrossRef]
  22. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
    [CrossRef] [PubMed]
  23. U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems: I. Theory,” Inverse Probl. 18, 645–658 (2002).
    [CrossRef]
  24. U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002).
    [CrossRef]
  25. Y. Zhang, A. Ghodrati, D. H. Brooks, “Analysis of Spatial-Temporal Regularization Methods for Linear Inverse Problems from a Common Statistical Framework,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 772–775.
  26. M. N. Wernick, E. J. Infusino, M. Milosevic, “Fast spatio-temporal image reconstruction for dynamic PET,” IEEE Trans. Med. Imaging 18, 185–195 (1999).
    [CrossRef] [PubMed]
  27. T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002).
    [CrossRef] [PubMed]
  28. B. W. Reutter, G. T. Gullberg, R. H. Huesman, “Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines,” IEEE Trans. Med. Imaging 19, 434–450 (2000).
    [CrossRef] [PubMed]
  29. S. Ahn, J. A. Fessler, T. E. Nichols, R. A. Koeppe, “Covariance of kinetic parameter estimators based on time activity curve reconstructions: preliminary study on 1-D dynamic imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 368–371.
  30. J. A. Jacquez, Compartmental Analysis in Biology and Medicine (The University of Michigan Press, Ann Arbor, Mich., 1985).
  31. R. E. Carson, K. Lange, “The EM parametric image reconstruction algorithm,” J. Am. Stat. Assoc. 80, 20–22 (1985).
    [CrossRef]
  32. J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997).
    [CrossRef] [PubMed]
  33. M. Kamasak, C. A. Bouman, E. D. Morris, K. Sauer, “Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data,” in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers (IEEE Signal Processing Society, www.ieee.org/organizations/society/sp/conferences.html, 2003), pp. 1919–1923.
  34. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
    [CrossRef]
  35. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
    [CrossRef]
  36. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
    [CrossRef]
  37. K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
    [CrossRef]
  38. C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
    [CrossRef] [PubMed]
  39. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  40. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
    [CrossRef] [PubMed]
  41. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
    [CrossRef]
  42. J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
    [CrossRef]
  43. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  44. F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Chem. Phys. 187, 597–619 (2003).
  45. E. K.P. Chong, S. H. Zak, An Introduction to Optimization (Wiley, New York, 1996).
  46. J. C. Adams, “MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
    [CrossRef]
  47. S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
    [CrossRef]
  48. S. Oh, C. A. Bouman, K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
    [CrossRef] [PubMed]
  49. A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, K. J. Webb, “ Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid,” Appl. Opt. 44, 2300–2310 (2005).
    [CrossRef] [PubMed]
  50. R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
    [CrossRef] [PubMed]

2005

2004

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[CrossRef]

2003

F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Chem. Phys. 187, 597–619 (2003).

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. J. Radiol. 13, 195–208 (2003).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, O. Nalcioglu, “ In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003).
[CrossRef]

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

2002

U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems: I. Theory,” Inverse Probl. 18, 645–658 (2002).
[CrossRef]

U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002).
[CrossRef]

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
[CrossRef]

T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002).
[CrossRef] [PubMed]

2001

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001).
[CrossRef] [PubMed]

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

2000

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
[CrossRef] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

B. W. Reutter, G. T. Gullberg, R. H. Huesman, “Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines,” IEEE Trans. Med. Imaging 19, 434–450 (2000).
[CrossRef] [PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

1999

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

M. N. Wernick, E. J. Infusino, M. Milosevic, “Fast spatio-temporal image reconstruction for dynamic PET,” IEEE Trans. Med. Imaging 18, 185–195 (1999).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1998

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

1997

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

1994

1993

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

1989

J. C. Adams, “MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

1985

R. E. Carson, K. Lange, “The EM parametric image reconstruction algorithm,” J. Am. Stat. Assoc. 80, 20–22 (1985).
[CrossRef]

Abdoulaev, G.

Achilefu, S.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Adams, J. C.

J. C. Adams, “MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

Ahn, S.

S. Ahn, J. A. Fessler, T. E. Nichols, R. A. Koeppe, “Covariance of kinetic parameter estimators based on time activity curve reconstructions: preliminary study on 1-D dynamic imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 368–371.

Andronica, R.

Arif, I.

Arridge, S. R.

V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003).
[CrossRef]

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

Asma, E.

T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002).
[CrossRef] [PubMed]

Bailey, D.

J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997).
[CrossRef] [PubMed]

Barbour, R. L.

Barbour, S.-L. S.

Becker, A.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Bellnier, D. A.

W. R. Potter, D. A. Bellnier, T. J. Dougherty, “Optical methods for in-vivo pharmacokinetics,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. SPIE1645, 166–170 (1992).

Ben-Amotz, D.

Bevilacqua, F.

Bluestone, A.

Bluestone, A. Y.

Boas, D.

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

Boas, D. A.

Bogdanov, J. A.

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[CrossRef] [PubMed]

Bouman, C. A.

S. Oh, C. A. Bouman, K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[CrossRef] [PubMed]

A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, K. J. Webb, “ Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid,” Appl. Opt. 44, 2300–2310 (2005).
[CrossRef] [PubMed]

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
[CrossRef]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

M. Kamasak, C. A. Bouman, E. D. Morris, K. Sauer, “Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data,” in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers (IEEE Signal Processing Society, www.ieee.org/organizations/society/sp/conferences.html, 2003), pp. 1919–1923.

Bremer, C.

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. J. Radiol. 13, 195–208 (2003).

Brooks, D. H.

Y. Zhang, A. Ghodrati, D. H. Brooks, “Analysis of Spatial-Temporal Regularization Methods for Linear Inverse Problems from a Common Statistical Framework,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 772–775.

Bugaj, J. E.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Carson, R. E.

R. E. Carson, K. Lange, “The EM parametric image reconstruction algorithm,” J. Am. Stat. Assoc. 80, 20–22 (1985).
[CrossRef]

Chance, B.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Chong, E. K.P.

E. K.P. Chong, S. H. Zak, An Introduction to Optimization (Wiley, New York, 1996).

Christian, B. T.

E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).

Cornell, K. K.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Cuccia, D. J.

Cunningham, V.

J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997).
[CrossRef] [PubMed]

Delpy, D. T.

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

Diamond, K. R.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Dorshow, R. B.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Dougherty, T. J.

W. R. Potter, D. A. Bellnier, T. J. Dougherty, “Optical methods for in-vivo pharmacokinetics,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. SPIE1645, 166–170 (1992).

Duderstadt, J. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

Durkin, A. J.

Ebert, B.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Endres, C. J.

E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).

Eppstein, M. J.

F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Chem. Phys. 187, 597–619 (2003).

Fedele, F.

F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Chem. Phys. 187, 597–619 (2003).

Fessler, J. A.

S. Ahn, J. A. Fessler, T. E. Nichols, R. A. Koeppe, “Covariance of kinetic parameter estimators based on time activity curve reconstructions: preliminary study on 1-D dynamic imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 368–371.

Fisher, R. E.

E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).

Franceschini, M. A.

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

Ghodrati, A.

Y. Zhang, A. Ghodrati, D. H. Brooks, “Analysis of Spatial-Temporal Regularization Methods for Linear Inverse Problems from a Common Statistical Framework,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 772–775.

Graber, H. L.

Grotzinger, C.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Gullberg, G. T.

B. W. Reutter, G. T. Gullberg, R. H. Huesman, “Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines,” IEEE Trans. Med. Imaging 19, 434–450 (2000).
[CrossRef] [PubMed]

Gulsen, G.

Gurfinkel, M.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Gust, J. D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Hamilton, L. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

Hawrysz, D. J.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Hayward, J. E.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Hessenius, C.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Hielscher, A. H.

Hira, J.

Huesman, R. H.

B. W. Reutter, G. T. Gullberg, R. H. Huesman, “Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines,” IEEE Trans. Med. Imaging 19, 434–450 (2000).
[CrossRef] [PubMed]

Hutchinson, C. L.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Infusino, E. J.

M. N. Wernick, E. J. Infusino, M. Milosevic, “Fast spatio-temporal image reconstruction for dynamic PET,” IEEE Trans. Med. Imaging 18, 185–195 (1999).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

Jacquez, J. A.

J. A. Jacquez, Compartmental Analysis in Biology and Medicine (The University of Michigan Press, Ann Arbor, Mich., 1985).

Kaipio, J. P.

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003).
[CrossRef]

Kamasak, M.

M. Kamasak, C. A. Bouman, E. D. Morris, K. Sauer, “Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data,” in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers (IEEE Signal Processing Society, www.ieee.org/organizations/society/sp/conferences.html, 2003), pp. 1919–1923.

Kennedy, M. D.

Koeppe, R. A.

S. Ahn, J. A. Fessler, T. E. Nichols, R. A. Koeppe, “Covariance of kinetic parameter estimators based on time activity curve reconstructions: preliminary study on 1-D dynamic imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 368–371.

Kolehmainen, V.

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003).
[CrossRef]

Laible, J. P.

F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Chem. Phys. 187, 597–619 (2003).

Lange, K.

R. E. Carson, K. Lange, “The EM parametric image reconstruction algorithm,” J. Am. Stat. Assoc. 80, 20–22 (1985).
[CrossRef]

LaPlant, F. P.

Leahy, R. M.

T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002).
[CrossRef] [PubMed]

Licha, K.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Louis, A. K.

U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems: I. Theory,” Inverse Probl. 18, 645–658 (2002).
[CrossRef]

U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002).
[CrossRef]

Low, P. S.

A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, K. J. Webb, “ Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid,” Appl. Opt. 44, 2300–2310 (2005).
[CrossRef] [PubMed]

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

Luo, H.

Mahmood, U.

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[CrossRef] [PubMed]

Matthews, J.

J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997).
[CrossRef] [PubMed]

Mayer, R. H.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Merritt, S.

Millane, R. P.

Milosevic, M.

M. N. Wernick, E. J. Infusino, M. Milosevic, “Fast spatio-temporal image reconstruction for dynamic PET,” IEEE Trans. Med. Imaging 18, 185–195 (1999).
[CrossRef] [PubMed]

Milstein, A. B.

Moore, A. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Moore, T. A.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Morris, E. D.

E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).

M. Kamasak, C. A. Bouman, E. D. Morris, K. Sauer, “Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data,” in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers (IEEE Signal Processing Society, www.ieee.org/organizations/society/sp/conferences.html, 2003), pp. 1919–1923.

Muggenburg, B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Muzic, R. F.

E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).

Nalcioglu, O.

Nichols, T. E.

T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002).
[CrossRef] [PubMed]

S. Ahn, J. A. Fessler, T. E. Nichols, R. A. Koeppe, “Covariance of kinetic parameter estimators based on time activity curve reconstructions: preliminary study on 1-D dynamic imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 368–371.

Nikula, K.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Ntziachristos, V.

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. J. Radiol. 13, 195–208 (2003).

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Oh, S.

Pandey, R.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Patterson, M. S.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

Pei, Y.

Pogue, B. W.

Potter, W. R.

W. R. Potter, D. A. Bellnier, T. J. Dougherty, “Optical methods for in-vivo pharmacokinetics,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. SPIE1645, 166–170 (1992).

Price, P.

J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997).
[CrossRef] [PubMed]

Prince, S.

V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003).
[CrossRef]

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

Qi, J.

T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002).
[CrossRef] [PubMed]

Rajagopalan, R.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Ralston, W.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Ramirez, N.

Reddy, J. A.

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

Reutter, B. W.

B. W. Reutter, G. T. Gullberg, R. H. Huesman, “Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines,” IEEE Trans. Med. Imaging 19, 434–450 (2000).
[CrossRef] [PubMed]

Reynolds, J. S.

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

Ripoll, J.

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

Sakata, Y.

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

Saquib, S. S.

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

Sauer, K.

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

M. Kamasak, C. A. Bouman, E. D. Morris, K. Sauer, “Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data,” in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers (IEEE Signal Processing Society, www.ieee.org/organizations/society/sp/conferences.html, 2003), pp. 1919–1923.

Schmidt, K. C.

E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).

Schmitt, U.

U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002).
[CrossRef]

U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems: I. Theory,” Inverse Probl. 18, 645–658 (2002).
[CrossRef]

Schmitz, C. H.

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

Semmler, W.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Snyder, P. W.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Soller, I.

Springett, R.

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

Stott, J. J.

Sukowski, U.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Tatman, D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Thompson, A. B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Thompson, C. A.

Tromberg, B. J.

Troy, T. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Tung, C.

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[CrossRef] [PubMed]

Vauhkonen, M.

U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002).
[CrossRef]

Wang, J.

Waters, D. J.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Webb, K. J.

A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, K. J. Webb, “ Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid,” Appl. Opt. 44, 2300–2310 (2005).
[CrossRef] [PubMed]

S. Oh, C. A. Bouman, K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[CrossRef] [PubMed]

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
[CrossRef]

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

Weersink, R. A.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. J. Radiol. 13, 195–208 (2003).

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[CrossRef] [PubMed]

Wernick, M. N.

M. N. Wernick, E. J. Infusino, M. Milosevic, “Fast spatio-temporal image reconstruction for dynamic PET,” IEEE Trans. Med. Imaging 18, 185–195 (1999).
[CrossRef] [PubMed]

Wiedenmann, B.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Wolters, C.

U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002).
[CrossRef]

Ye, J. C.

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Yu, H.

Zak, S. H.

E. K.P. Chong, S. H. Zak, An Introduction to Optimization (Wiley, New York, 1996).

Zhang, Q.

Zhang, Y.

Y. Zhang, A. Ghodrati, D. H. Brooks, “Analysis of Spatial-Temporal Regularization Methods for Linear Inverse Problems from a Common Statistical Framework,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 772–775.

Zhong, S.

Appl. Math. Comput.

J. C. Adams, “MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

Appl. Opt.

Crit. Rev. Ther. Drug Carrier Syst.

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

Eur. J. Radiol.

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. J. Radiol. 13, 195–208 (2003).

IEEE Trans. Image Process.

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

S. Oh, C. A. Bouman, K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

M. N. Wernick, E. J. Infusino, M. Milosevic, “Fast spatio-temporal image reconstruction for dynamic PET,” IEEE Trans. Med. Imaging 18, 185–195 (1999).
[CrossRef] [PubMed]

T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002).
[CrossRef] [PubMed]

B. W. Reutter, G. T. Gullberg, R. H. Huesman, “Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines,” IEEE Trans. Med. Imaging 19, 434–450 (2000).
[CrossRef] [PubMed]

IEEE Trans. Signal Process.

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

Inverse Probl.

U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems: I. Theory,” Inverse Probl. 18, 645–658 (2002).
[CrossRef]

U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Am. Stat. Assoc.

R. E. Carson, K. Lange, “The EM parametric image reconstruction algorithm,” J. Am. Stat. Assoc. 80, 20–22 (1985).
[CrossRef]

J. Biomed. Opt.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

J. Chem. Phys.

F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Chem. Phys. 187, 597–619 (2003).

J. Opt. Soc. Am. A

Nat. Biotechnol.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol.

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997).
[CrossRef] [PubMed]

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Radiology

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[CrossRef] [PubMed]

Other

E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).

W. R. Potter, D. A. Bellnier, T. J. Dougherty, “Optical methods for in-vivo pharmacokinetics,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. SPIE1645, 166–170 (1992).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

S. Ahn, J. A. Fessler, T. E. Nichols, R. A. Koeppe, “Covariance of kinetic parameter estimators based on time activity curve reconstructions: preliminary study on 1-D dynamic imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 368–371.

J. A. Jacquez, Compartmental Analysis in Biology and Medicine (The University of Michigan Press, Ann Arbor, Mich., 1985).

M. Kamasak, C. A. Bouman, E. D. Morris, K. Sauer, “Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data,” in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers (IEEE Signal Processing Society, www.ieee.org/organizations/society/sp/conferences.html, 2003), pp. 1919–1923.

Y. Zhang, A. Ghodrati, D. H. Brooks, “Analysis of Spatial-Temporal Regularization Methods for Linear Inverse Problems from a Common Statistical Framework,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 772–775.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

E. K.P. Chong, S. H. Zak, An Introduction to Optimization (Wiley, New York, 1996).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Compartmental model describing the exchange of contrast agent between the tissue and the plasma.

Fig. 2
Fig. 2

Measurement approach for reconstructing η ( t ) and τ. Note that the measurement geometry may differ at each time.

Fig. 3
Fig. 3

Source and detector locations used in the simulations. The sources were on the bottom face of the phantom, and the detectors were on the top. The sources were illuminated in the order shown, with one source used for each measurement time.

Fig. 4
Fig. 4

True parameter images describing the time-varying fluorescence in the simulation study. Cross sections are shown through the top heterogeneity and the bottom heterogeneity. Note that the parameter γ 3 indicates different uptake rates in the two heterogeneities. In (e), an isosurface of the γ 1 reconstruction is shown, contoured at 1 3 of the maximum value.

Fig. 5
Fig. 5

Reconstructed parameter images describing the time-varying fluorescence in the simulation study. In (e), an isosurface of the γ 1 reconstruction is shown, contoured at 1 3 of the maximum value.

Fig. 6
Fig. 6

(a)–(d) True fluorescence versus time η ( t ) . (e) η ( t ) for a sample point within each heterogeneity.

Fig. 7
Fig. 7

(a)–(d) Fluorescence versus time, reconstructed by parametric ICD method. (e) η ̂ ( t ) for a sample point within each heterogeneity.

Fig. 8
Fig. 8

Convergence for the PICD algorithm in the simulation study.

Fig. 9
Fig. 9

(a)–(d) Fluorescence versus time, reconstructed independently at each measurement time, with the same data as in the parametric reconstructions. (e) η ̂ ( t ) for a sample point within each heterogeneity.

Fig. 10
Fig. 10

(a)–(d) Fluorescence versus time, reconstructed independently at each measurement time, with a 21-fold increase in data over those used in the parametric reconstructions. (e) η ̂ ( t ) for a sample point within each heterogeneity.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

[ D ( r ) ϕ ( r , ω ) ] [ μ a ( r ) + j ω c ] ϕ ( r , ω ) = δ ( r s k ) ,
[ D x ( r ) ϕ x ( r , ω ) ] [ μ a x ( r ) + j ω c ] ϕ x ( r , ω ) = δ ( r s k ) ,
[ D m ( r ) ϕ m ( r , ω ) ] [ μ a m ( r ) + j ω c ] ϕ m ( r , ω ) = ϕ x ( r , ω ) η μ a f ( r ) 1 j ω τ ( r ) 1 + [ ω τ ( r ) ] 2 ,
η ( r , t ) = η ̃ ( γ 1 ( r ) , , γ U ( r ) , t ) ,
c P = A exp ( κ 3 t ) ,
d c T d t = κ 1 c P κ 2 c T .
c T = ( κ 1 A κ 2 κ 3 ) [ exp ( κ 3 t ) exp ( κ 2 t ) ] .
η ( r , t ) = w P ( r ) c P ( t ) + w T ( r ) c T ( r , t ) .
η ( r , t ) = γ 1 ( r ) exp [ γ 4 ( r ) t ] γ 2 ( r ) exp [ γ 3 ( r ) t ] ,
γ 1 = A ( w P + w T κ 1 κ 2 κ 3 ) ,
γ 2 = A ( w T κ 1 κ 2 κ 3 ) ,
γ 3 = κ 2 ,
γ 4 = κ 3 .
x = [ x ( 0 ) T x ( 1 ) T x ( U ) T ] T ,
x ( u ) T = [ x ( u ) , 1 x ( u ) , N ] T ,
x ( 0 ) T = [ τ ( r 1 ) τ ( r N ) ] T ,
x ( u ) T = [ γ u ( r 1 ) γ u ( r N ) ] T ,
x ̂ MAP = arg max x 0 { log p Y X ( y x ) + log p X ( x ) } ,
p Y X ( y x ) = 1 ( π α ) P Λ 1 exp [ y f ( x ) Λ 2 α ] ,
α Λ 1 = α diag [ y 1 , y 2 , y P ] .
p X ( x ) = u = 0 U p X ( u ) ( x ( u ) ) = u = 0 U 1 σ ( u ) N ζ ( ρ ( u ) )
exp ( 1 ρ ( u ) σ ( u ) ρ ( u ) { i , j } N b i j x ( u ) , i x ( u ) , j ρ ( u ) ) ,
x ̂ = arg max x 0 , α 0 { p X Y ( x y , α ) } .
l ( x ) = P log y f ( x ) Λ 2 u = 0 U ( 1 ρ ( u ) σ ( u ) ρ ( u ) { i , j } N b i j x ( u ) , i x ( u ) , j ρ ( u ) ) ,
α ̂ 1 P y f ( x ̂ ) Λ 2
x ̂ arg update x 0 { log p Y X ( y x , α ̂ ) + log p X ( x ) } ,
c ( x , α ̂ ) = 1 α ̂ y f ( x ) Λ 2 + u = 0 U ( 1 ρ ( u ) σ ( u ) ρ ( u ) { i , j } N b i j x ( u ) , i x ( u ) , j ρ ( u ) ) .
ϕ f ( s t c , k , d t c , m ; ω , t c , x ) = η ( r , t c ) 1 j ω τ ( r ) 1 + [ ω τ ( r ) ] 2 g x ( s t c , k , r ; ω ) g m ( r , d t c , m ; ω ) d 3 r .
f ω , t c ( x f ) = [ ϕ f ( s t c , 1 , d t c , 1 ; ω , t c , x ) ϕ f ( s t c , 1 , d t c , 2 ; ω , t c , x ) ϕ f ( s t c , 1 , d t c , M c ; ω , t c , x ) ϕ f ( s t c , 2 , d t c , 1 ; ω , t c , x ) ϕ f ( s t c K c , d t c , M c ; ω , t c , x ) ] .
f t c ( x ) = [ f ω 1 , t c ( x ) T , f ω 2 , t c ( x ) T f ω Q , t c ( x ) T ] T ,
f ( x ) = [ f t 1 ( x ) T , f t 2 ( x ) T f t C ( x ) T ] T .
y t c = [ y ω 1 , t c T , y ω 2 , t c T y ω Q , t c T ] T ,
y = [ y t 1 T , y t 2 T y t C T ] T ,
G x ( ω , t c ) = [ g x ( s t c , 1 , r 1 ; ω ) g x ( s t c , 1 , r N ; ω ) g x ( s t c , K , r 1 ; ω ) g x ( s t c , K , r N ; ω ) ] ,
G m ( ω , t c ) = [ g m ( d t c , 1 , r 1 ; ω ) g m ( d t c , 1 , r N ; ω ) g m ( d t c , M , r 1 ; ω ) g m ( d t c , M , r N ; ω ) ] .
J ω , t c = V [ G 1 , 1 x ( ω , t c ) G 1 , 1 m ( ω , t c ) G 1 , N x ( ω , t c ) G 1 , N m ( ω , t c ) G 1 , 1 x ( ω , t c ) G M , 1 m ( ω , t c ) G 1 , N x ( ω , t c ) G M , N m ( ω , t c ) G 2 , 1 x ( ω , t c ) G 1 , 1 m ( ω , t c ) G 2 , N x ( ω , t c ) G 1 , N m ( ω , t c ) G K , 1 x ( ω , t c ) G M , 1 m ( ω , t c ) G K , N x ( ω , t c ) G M , N m ( ω , t c ) ] ,
h ( x ( ) , i , ω , t ) = η ( r i , t ) 1 j ω τ ( r i ) 1 + [ ω τ ( r i ) ] 2 ,
h ω , t c ( x ) = [ h ( x ( ) , 1 , ω , t c ) h ( x ( ) , N , ω , t c ) ] T ,
f ω , t c ( x ) = J ω , t c h ω , t c ( x )
c ( x , α ̂ ) = 1 α ̂ c = 1 C q = 1 Q y ω q , t c J ω q , t c h ω q , t c ( x ) Λ ω q , t c 2 + u = 0 U 1 ρ ( u ) σ ( u ) ρ ( u ) { i , j } N b i j x ( u ) , i x ( u ) , j ρ ( u ) .
x ̂ ( u ) , i arg min x ( u ) , i 0 { 1 α ̂ c = 1 C q = 1 Q y ω q , t c [ J ω q , t c ] ( i ) h ( x ( ) , i , ω q , t c ) Λ ω q , t c 2 + 1 ρ ( u ) σ ( u ) ρ ( u ) j N i b i j x ( u ) , i x ̂ ( u ) , j ρ ( u ) } ,
x ̂ ( u ) , i arg min x ( u ) , i 0 { 1 α ̂ c = 1 C q = 1 Q z ω q , t c [ J ω q , t c ] ( i ) [ h ( x ( ) , i , ω q , t c ) h ( x ̃ ( ) , i , ω q , t c ) ] Λ ω q , t c 2 + 1 ρ ( u ) σ ( u ) ρ ( u ) j N i b i j x ( u ) , i x ̂ ( u ) , j ρ ( u ) } , = arg min x ( u ) , i 0 { 1 α ̂ c = 1 C q = 1 Q ( θ 1 , ω q , t c [ h ( x ( ) , i , ω q , t c ) h ( x ̃ ( ) , i , ω q , t c ) ] + θ 2 , ω q , t c 2 [ h ( x ( ) , i , ω q , t c ) h ( x ̃ ( ) , i , ω q , t c ) ] 2 ) + 1 ρ ( u ) σ ( u ) ρ ( u ) j N i b i j x ( u ) , i x ̃ ( u ) , j ρ ( u ) } ,
θ 1 , ω q , t c = 2 Re { [ J ω q , t c ] i H Λ ω q , t c z ω q , t c } ,
θ 2 , ω r , t c = 2 [ J ω q , t c ] i H Λ ω q , t c [ J ω q , t c ] i .
x ̂ ( 1 ) , i , x ̂ ( 2 ) , i arg min x ( 1 ) , i = x ( 2 ) , i 0 { 1 α ̂ c = 1 C q = 1 Q ( θ 1 , ω q , t c [ h ( x ( ) , i , ω q , t c ) h ( x ̃ ( ) , i , ω q , t c ) ] + θ 2 , ω q , t c 2 [ h ( x ( ) , i , ω q , t c ) h ( x ̃ ( ) , i , ω q , t c ) ] 2 ) + 1 ρ ( 1 ) σ ( 1 ) ρ ( 1 ) j N i b i j x ( 1 ) , i x ̃ ( 1 ) , j ρ ( 1 ) + 1 ρ ( 2 ) σ ( 2 ) ρ ( 2 ) j N i b i j x ( 2 ) , i x ̃ ( 2 ) , j ρ ( 2 ) } .

Metrics