Abstract

Results are presented on experimental and theoretical work performed to compare diffraction phenomena for ultrashort 10fs pulses and continuous-wave propagation modes illuminating different-sized pinholes and slits. Results demonstrate that 10fs pulses do not produce high-frequency diffraction like that produced with continuous-wave illumination. The diffraction through a 1mm pinhole of temporally stretched pulses obtained by using fused silica plates whose frequency spectrum remains the same is compared with those of 10fs pulses. The overall diffraction intensity profiles are, however, nearly identical in this case. The simulations of diffraction patterns for 100fs, 10fs, and 1fs incident pulse were compared theoretically for different aperture sizes and frequencies. Calculations indicate that the lack of high-frequency diffraction for the mode-locked case is due to the broadband nature of the ultrashort laser pulses; i.e., the distribution of the frequency contained in the pulse ends up washing out when objects are illuminated with pulses of broad frequency content. The results of this work have important application in biomedical imaging and remote imaging applications, to name only a few.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2261 (2003).
    [CrossRef] [PubMed]
  2. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of cascaded hollow fiber super continuum,” Opt. Lett. 28, 1987–1991 (2003).
    [CrossRef] [PubMed]
  3. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, J.-P. Meyn, “Generation of sub-6-fs blue pulses by frequency doubling with quasi-phase-matching gratings,” Opt. Lett. 26, 614–617 (2001).
    [CrossRef]
  4. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies, “Gernation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–378 (2001).
    [CrossRef]
  5. J. Giles, “The fast show,” Nature (London) 420, 737–738 (2002).
    [CrossRef]
  6. P. Corkum, “Attosecond pulses at last,” Nature (London) 403, 845–847 (2000).
    [CrossRef]
  7. A. E. Kaplan, P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801–074805 (2002).
    [CrossRef] [PubMed]
  8. D. R. Alexander, M. L. Rohlfs, J. C. Stauffer, “Chemical aerosol detection using femtosecond laser pulses,” Proc. SPIE 3082, 22–29 (1997).
    [CrossRef]
  9. E. Hecht, Optics (Pearson, 2002) Chap. 13, p. 602.
  10. M. G. Benedict, V. A. Malyshev, “Reflection and transmission of ultrashort light pulse through a thin resonant medium: local-field effects,” Phys. Rev. A 43, 3845–3853 (1991).
    [CrossRef] [PubMed]
  11. M. G. Benedict, “On the reflection and transmission of femtosecond pulses,” Proc. SPIE 3573, 486–489 (1998).
    [CrossRef]
  12. M. Gu, X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13, 771–778 (1996).
    [CrossRef]
  13. J. Anderson, C. Roychoudhuri, “Diffraction of an extremely short optical pulse,” J. Opt. Soc. Am. A 15, 456–463 (1998).
    [CrossRef]
  14. N. R. Tadepalli, D. R. Alexander, D. W. Doerr, J. C. Li, H. F. Zhang, “Femtosecond pulse stretching in microscope objectives used for micro/nanomachining,” J. Laser Appl. (to be published).

2003 (2)

2002 (2)

J. Giles, “The fast show,” Nature (London) 420, 737–738 (2002).
[CrossRef]

A. E. Kaplan, P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801–074805 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (1)

P. Corkum, “Attosecond pulses at last,” Nature (London) 403, 845–847 (2000).
[CrossRef]

1998 (2)

M. G. Benedict, “On the reflection and transmission of femtosecond pulses,” Proc. SPIE 3573, 486–489 (1998).
[CrossRef]

J. Anderson, C. Roychoudhuri, “Diffraction of an extremely short optical pulse,” J. Opt. Soc. Am. A 15, 456–463 (1998).
[CrossRef]

1997 (1)

D. R. Alexander, M. L. Rohlfs, J. C. Stauffer, “Chemical aerosol detection using femtosecond laser pulses,” Proc. SPIE 3082, 22–29 (1997).
[CrossRef]

1996 (1)

1991 (1)

M. G. Benedict, V. A. Malyshev, “Reflection and transmission of ultrashort light pulse through a thin resonant medium: local-field effects,” Phys. Rev. A 43, 3845–3853 (1991).
[CrossRef] [PubMed]

Alexander, D. R.

D. R. Alexander, M. L. Rohlfs, J. C. Stauffer, “Chemical aerosol detection using femtosecond laser pulses,” Proc. SPIE 3082, 22–29 (1997).
[CrossRef]

N. R. Tadepalli, D. R. Alexander, D. W. Doerr, J. C. Li, H. F. Zhang, “Femtosecond pulse stretching in microscope objectives used for micro/nanomachining,” J. Laser Appl. (to be published).

Anderson, J.

Angelow, G.

Benedict, M. G.

M. G. Benedict, “On the reflection and transmission of femtosecond pulses,” Proc. SPIE 3573, 486–489 (1998).
[CrossRef]

M. G. Benedict, V. A. Malyshev, “Reflection and transmission of ultrashort light pulse through a thin resonant medium: local-field effects,” Phys. Rev. A 43, 3845–3853 (1991).
[CrossRef] [PubMed]

Biegert, J.

Boiko, A.

Corkum, P.

P. Corkum, “Attosecond pulses at last,” Nature (London) 403, 845–847 (2000).
[CrossRef]

De Silvestri, S.

Doerr, D. W.

N. R. Tadepalli, D. R. Alexander, D. W. Doerr, J. C. Li, H. F. Zhang, “Femtosecond pulse stretching in microscope objectives used for micro/nanomachining,” J. Laser Appl. (to be published).

Ell, R.

Fejer, M. M.

Fujimoto, J. G.

Gallmann, L.

Gan, X. S.

Giles, J.

J. Giles, “The fast show,” Nature (London) 420, 737–738 (2002).
[CrossRef]

Gu, M.

Hecht, E.

E. Hecht, Optics (Pearson, 2002) Chap. 13, p. 602.

Imeshev, G.

Ippen, E. P.

Kaplan, A. E.

A. E. Kaplan, P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801–074805 (2002).
[CrossRef] [PubMed]

Kärtner, F. X.

Keller, U.

Lederer, M. J.

Li, J. C.

N. R. Tadepalli, D. R. Alexander, D. W. Doerr, J. C. Li, H. F. Zhang, “Femtosecond pulse stretching in microscope objectives used for micro/nanomachining,” J. Laser Appl. (to be published).

Luther-Davies, B.

Malyshev, V. A.

M. G. Benedict, V. A. Malyshev, “Reflection and transmission of ultrashort light pulse through a thin resonant medium: local-field effects,” Phys. Rev. A 43, 3845–3853 (1991).
[CrossRef] [PubMed]

Meyn, J.-P.

Morgner, U.

Morita, R.

Nisoli, M.

Oka, K.

Rohlfs, M. L.

D. R. Alexander, M. L. Rohlfs, J. C. Stauffer, “Chemical aerosol detection using femtosecond laser pulses,” Proc. SPIE 3082, 22–29 (1997).
[CrossRef]

Roychoudhuri, C.

Sansone, G.

Schenkel, B.

Scheuer, V.

Shkolnikov, P. L.

A. E. Kaplan, P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801–074805 (2002).
[CrossRef] [PubMed]

Stagira, S.

Stauffer, J. C.

D. R. Alexander, M. L. Rohlfs, J. C. Stauffer, “Chemical aerosol detection using femtosecond laser pulses,” Proc. SPIE 3082, 22–29 (1997).
[CrossRef]

Steinmeyer, G.

Svelto, O.

Tadepalli, N. R.

N. R. Tadepalli, D. R. Alexander, D. W. Doerr, J. C. Li, H. F. Zhang, “Femtosecond pulse stretching in microscope objectives used for micro/nanomachining,” J. Laser Appl. (to be published).

Tschudi, T.

Vozzi, C.

Yamane, K.

Yamashita, M.

Zhang, H. F.

N. R. Tadepalli, D. R. Alexander, D. W. Doerr, J. C. Li, H. F. Zhang, “Femtosecond pulse stretching in microscope objectives used for micro/nanomachining,” J. Laser Appl. (to be published).

Zhang, Z.

J. Opt. Soc. Am. A (2)

Nature (London) (2)

J. Giles, “The fast show,” Nature (London) 420, 737–738 (2002).
[CrossRef]

P. Corkum, “Attosecond pulses at last,” Nature (London) 403, 845–847 (2000).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

M. G. Benedict, V. A. Malyshev, “Reflection and transmission of ultrashort light pulse through a thin resonant medium: local-field effects,” Phys. Rev. A 43, 3845–3853 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. E. Kaplan, P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801–074805 (2002).
[CrossRef] [PubMed]

Proc. SPIE (2)

D. R. Alexander, M. L. Rohlfs, J. C. Stauffer, “Chemical aerosol detection using femtosecond laser pulses,” Proc. SPIE 3082, 22–29 (1997).
[CrossRef]

M. G. Benedict, “On the reflection and transmission of femtosecond pulses,” Proc. SPIE 3573, 486–489 (1998).
[CrossRef]

Other (2)

N. R. Tadepalli, D. R. Alexander, D. W. Doerr, J. C. Li, H. F. Zhang, “Femtosecond pulse stretching in microscope objectives used for micro/nanomachining,” J. Laser Appl. (to be published).

E. Hecht, Optics (Pearson, 2002) Chap. 13, p. 602.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for studying the diffraction of a laser pulse. The laser is operated in two modes: pulse mode and continuous mode at a center wavelength of 800 nm with a repetition rate 75.3 MHz producing 10 fs pulses.

Fig. 2
Fig. 2

Comparison, by using a beam profile system, of the diffraction patterns of a ML (a) and a CW (b) beam passing through an aperture.

Fig. 3
Fig. 3

Comparison, by using a beam profile system, of the diffraction patterns of (a) a 10 fs and (b) a stretched pulse passing through an aperture.

Fig. 4
Fig. 4

Spectra of (a) a 10 fs pulse , (b) a stretched pulse, (b) and (c) the CW case.

Fig. 5
Fig. 5

Comparison of the diffraction patterns of different-sized slits at (a), (b) 60 μ m , (c), (d) 500 μ m , and (e), (f) 1000 μ m for the ML and CW cases.

Fig. 6
Fig. 6

Comparison of the diffraction patterns of different-sized pinholes at (a), (b) 60 μ m , (c), (d) 500 μ m , and (e), (f) 1000 μ m for the ML and CW cases.

Fig. 7
Fig. 7

Matlab simulation of the diffraction patterns of (a) a 60 μ m and (b) a 1000 μ m slit for the CW and the 10 fs pulse .

Fig. 8
Fig. 8

Matlab simulation of the diffraction patterns of (a) a 60 μ m and (b) a 1000 μ m slit for the CW and the 1 fs .

Fig. 9
Fig. 9

Matlab simulation of the diffraction patterns of a 1000 μ m slit for (a) CW and 100 fs , (b) 10 fs , and (c) 1 fs .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( θ ) = I 0 ( sin β β ) 2 ,
I ( θ ) = I 0 [ sin ( π b λ sin θ ) sin ( θ π b λ ) ] 2 .
I ( z ) = K 2 0.6 1 exp [ ( 1 λ 1 λ 0 ) 2 2 Γ ] { sin [ π b λ sin ( z r 0 ) ] π b λ sin ( z r 0 ) } 2 d λ ,
I 0 = 0.6 1 C 1 2 exp [ ( 1 λ 1 λ 0 ) 2 2 Γ ] d λ , Γ = 0.0074 ( μ m ) 2 ,
I ( z ) = K { 0.6 1 [ u 2 u 1 exp ( i π u 2 λ 0 2 λ ) d ( u λ 0 λ ) ] 2 exp [ ( 1 λ 1 λ 0 ) 2 2 Γ ] d λ } .

Metrics