Abstract

The phase-space beam summation is a general analytical framework for local analysis and modeling of radiation from extended source distributions. In this formulation, the field is expressed as a superposition of beam propagators that emanate from all points in the source domain and in all directions. In this Part I of a two-part investigation, the theory is extended to include propagation in anisotropic medium characterized by a generic wave-number profile for time-harmonic fields; in a companion paper [J. Opt. Soc. Am. A 22, 1208 (2005) ], the theory is extended to time-dependent fields. The propagation characteristics of the beam propagators in a homogeneous anisotropic medium are considered. With use of Gaussian windows for the local processing of either ordinary or extraordinary electromagnetic field distributions, the field is represented by a phase-space spectral distribution in which the propagating elements are Gaussian beams that are formulated by using Gaussian plane-wave spectral distributions over the extended source plane. By applying saddle-point asymptotics, we extract the Gaussian beam phenomenology in the anisotropic environment. The resulting field is parameterized in terms of the spatial evolution of the beam curvature, beam width, etc., which are mapped to local geometrical properties of the generic wave-number profile. The general results are applied to the special case of uniaxial crystal, and it is found that the asymptotics for the Gaussian beam propagators, as well as the physical phenomenology attached, perform remarkably well.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription