Abstract

We develop a point-scattering approach to the plane-wave optical transmission of subwavelength metal hole arrays. We present a real-space description instead of the more conventional reciprocal-space description; this naturally produces interfering resonant features in the transmission spectra and makes explicit the tensorial properties of the transmission matrix. We give transmission spectra simulations for both square and hexagonal arrays; these can be evaluated at arbitrary angles and polarizations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [CrossRef]
  2. E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  4. S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4, S83–S87 (2002).
    [CrossRef]
  5. M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [CrossRef]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  7. J.-M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
    [CrossRef]
  8. S. A. Darmayan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
    [CrossRef]
  9. D. Gérard, L. Salomon, F. de Fornel, A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
    [CrossRef] [PubMed]
  10. C. Genet, M. P. van Exter, J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
    [CrossRef]
  11. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  12. W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
    [CrossRef]
  13. E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, E. W. J. M. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30, 90–92 (2005).
    [CrossRef] [PubMed]
  14. J. R. Taylor, Scattering Theory (Wiley, New York, 1972).
  15. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  16. L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
    [CrossRef] [PubMed]
  17. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
    [CrossRef]
  18. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
    [CrossRef] [PubMed]
  19. E. Altewischer, M. P. van Exter, J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature (London) 418, 304–306 (2002).
    [CrossRef]
  20. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1975).
  21. E. Altewischer, M. P. van Exter, J. P. Woerdman, “Polarization analysis of propagating surface plasmons in a subwavelength hole array,” J. Opt. Soc. Am. B 20, 1927–1931 (2003).
    [CrossRef]

2005 (1)

2004 (2)

D. Gérard, L. Salomon, F. de Fornel, A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
[CrossRef] [PubMed]

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

2003 (4)

C. Genet, M. P. van Exter, J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

S. A. Darmayan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, J. P. Woerdman, “Polarization analysis of propagating surface plasmons in a subwavelength hole array,” J. Opt. Soc. Am. B 20, 1927–1931 (2003).
[CrossRef]

2002 (2)

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Altewischer, M. P. van Exter, J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature (London) 418, 304–306 (2002).
[CrossRef]

2001 (4)

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J.-M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
[CrossRef]

2000 (1)

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Alkemade, P. F. A.

Altewischer, E.

Astilean, S.

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Barnes, W. L.

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1975).

Darmayan, S. A.

S. A. Darmayan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[CrossRef]

de Fornel, F.

Ebbesen, T. W.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Enoch, S.

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Garcia-Vidal, F. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Genet, C.

E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, E. W. J. M. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30, 90–92 (2005).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Gérard, D.

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Lezec, H. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Martin-Moreno, L.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Murray, W. A.

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Nevière, M.

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Popov, E.

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Reinisch, R.

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Salomon, L.

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Taylor, J. R.

J. R. Taylor, Scattering Theory (Wiley, New York, 1972).

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

van der Drift, E. W. J. M.

van Exter, M. P.

E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, E. W. J. M. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30, 90–92 (2005).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, J. P. Woerdman, “Polarization analysis of propagating surface plasmons in a subwavelength hole array,” J. Opt. Soc. Am. B 20, 1927–1931 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature (London) 418, 304–306 (2002).
[CrossRef]

van Zuuk, A.

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

J.-M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
[CrossRef]

Woerdman, J. P.

E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, E. W. J. M. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30, 90–92 (2005).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, J. P. Woerdman, “Polarization analysis of propagating surface plasmons in a subwavelength hole array,” J. Opt. Soc. Am. B 20, 1927–1931 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature (London) 418, 304–306 (2002).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1975).

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Zayats, A. V.

D. Gérard, L. Salomon, F. de Fornel, A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
[CrossRef] [PubMed]

S. A. Darmayan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[CrossRef]

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

S. Enoch, E. Popov, M. Nevière, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

E. Altewischer, M. P. van Exter, J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature (London) 418, 304–306 (2002).
[CrossRef]

Opt. Commun. (3)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

J.-M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
[CrossRef]

C. Genet, M. P. van Exter, J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (5)

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

S. A. Darmayan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Other (3)

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1975).

J. R. Taylor, Scattering Theory (Wiley, New York, 1972).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of the scattering process, including the direct scattering contribution defined at a chosen origin of the lattice.

Fig. 2
Fig. 2

Transmission coefficient of a square array at normal incidence, as a function of normalized input wavelength.

Fig. 3
Fig. 3

Transmission spectra for a square array (first row) for (a) TE and (b) TM polarizations and for a hexagonal array (second row) for (c) TE and (d) TM polarizations. These spectra have been calculated as a function of normalized input wavelength and angle of incidence when the tilt is performed along the y axis—see insets. For clarity, we show a globally shifted curve for each angular increment of 2.3 ° .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ͇ Scatt ( 0 ) = { r j } τ ͇ ( 0 , r j ) .
η 1 + i η 2 = ( ϵ 1 ϵ 2 ϵ 1 + ϵ 2 ) 1 2 .
τ ͇ ( 0 , r j ) = f ( k ̂ ) exp ( i k ̂ r j ) r j exp ( i k in r j ) u ̂ j u ̂ j .
λ res λ 0 = 1 ( n 2 + m 2 ) 1 2
λ res λ 0 = 1 ( n 2 + m 2 ) 1 2 = 1 p ,

Metrics