Abstract

A spectroscopic Stokes polarimeter is used to directly measure the linearly, circularly, and randomly polarized components of light obtained on transmission of unpolarized light through thick chiral nematic liquid-crystal cells in the stop band. The Stokes parameters are simulated to fit the experimental data by use of the Berreman 4×4 transfer matrix by means of the Jones and Stokes vectors and taking into account multiple reflections at the interfaces of the cell. Excellent agreement is obtained. The transmitted light through a commercial cell is mainly circularly polarized at normal incidence, but a significant linearly polarized component is also observed. The model shows that this results from refractive-index mismatching at the liquid-crystal–alignment-layer interface, but a small linearly polarized component remains even with optimized index matching. An improved device configuration incorporating random defects at the exit boundary of the liquid crystal gives a highly circularly polarized output with virtually no linear or unpolarized components.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Singapore, 1995).
  2. H. De Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
    [CrossRef]
  3. V. A. Belyakov, V. D. Dmitrienko, “Theory of the optical properties of cholesteric liquid crystals,” Sov. Phys. Solid State 15, 1811–1815 (1974).
  4. S. Chandrasekhar, J. S. Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
    [CrossRef]
  5. D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
    [CrossRef]
  6. H. F. Gleeson, H. J. Coles, “Optical properties of chiral nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 170, 9–34 (1989).
  7. H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
    [CrossRef]
  8. A. A. Gevorgyan, “Reflection and transmission of light in medium/cholesteric/substrate and glass(1)/Cholesteric/Glass(2) system,” Tech. Phys. 45, 1170–1176 (2000).
    [CrossRef]
  9. R. H. Good, A. Karali, “Transmission of cholesteric liquid crystal,” J. Opt. Soc. Am. A 11, 2145–2155 (1994).
    [CrossRef]
  10. K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
    [CrossRef]
  11. S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
    [CrossRef]
  12. M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
    [CrossRef]
  13. H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
    [CrossRef]
  14. W. D. St. John, Z. J. Lu, J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys. 78, 5253–5265 (1995).
    [CrossRef]
  15. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1988).
  16. A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975).
  17. Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. Part 1 36, 2760–2764 (1997).
    [CrossRef]
  18. H. G. Berry, G. Gabrielse, A. E. Livingston, “Measurement of Stokes parameters of light,” Appl. Opt. 16, 3200–3205 (1977).
    [CrossRef] [PubMed]
  19. E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).
  20. N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
    [CrossRef]
  21. M. Xu, F. Xu, D. K. Yang, “Effect of cell structure of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
    [CrossRef]
  22. D. W. Berreman, “Optics in stratified and anisotropic media,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [CrossRef]
  23. P. J. Lin-Chung, S. Teitler, “4×4 matrix formalisms for optics in stratified anisotropic media,” J. Opt. Soc. Am. A 1, 703–705 (1984).
    [CrossRef]
  24. I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal–crystal interface,” J. Comp. Physiol. 133, 75–83 (1997).
    [CrossRef]
  25. O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).
  26. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–754 (1979).
    [CrossRef]
  27. J. H. Kim, C. Rosenblatt, “Optical retardation of rub-induced scratches in a polyimide-treated substrate,” Appl. Phys. Lett. 72, 1917–1919 (1998).
    [CrossRef]
  28. A. Lakhtakia, “Dielectric sculptured thin films for polarization discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
    [CrossRef]
  29. Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
    [CrossRef]
  30. I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
    [CrossRef]

2004

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

2003

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

2002

I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

2001

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

2000

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

A. A. Gevorgyan, “Reflection and transmission of light in medium/cholesteric/substrate and glass(1)/Cholesteric/Glass(2) system,” Tech. Phys. 45, 1170–1176 (2000).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

1999

A. Lakhtakia, “Dielectric sculptured thin films for polarization discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
[CrossRef]

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

1998

M. Xu, F. Xu, D. K. Yang, “Effect of cell structure of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

J. H. Kim, C. Rosenblatt, “Optical retardation of rub-induced scratches in a polyimide-treated substrate,” Appl. Phys. Lett. 72, 1917–1919 (1998).
[CrossRef]

1997

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal–crystal interface,” J. Comp. Physiol. 133, 75–83 (1997).
[CrossRef]

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. Part 1 36, 2760–2764 (1997).
[CrossRef]

1995

W. D. St. John, Z. J. Lu, J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys. 78, 5253–5265 (1995).
[CrossRef]

1994

1989

H. F. Gleeson, H. J. Coles, “Optical properties of chiral nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 170, 9–34 (1989).

1984

1983

H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

1979

1977

1974

V. A. Belyakov, V. D. Dmitrienko, “Theory of the optical properties of cholesteric liquid crystals,” Sov. Phys. Solid State 15, 1811–1815 (1974).

1972

1971

E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).

S. Chandrasekhar, J. S. Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

1970

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

1951

H. De Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
[CrossRef]

Aldred, M. P.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

Arikainen, E. O.

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

Arnod, M.

I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

Asimakis, A.

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

Belyakov, V. A.

V. A. Belyakov, V. D. Dmitrienko, “Theory of the optical properties of cholesteric liquid crystals,” Sov. Phys. Solid State 15, 1811–1815 (1974).

Berreman, D. W.

D. W. Berreman, “Optics in stratified and anisotropic media,” J. Opt. Soc. Am. 62, 502–510 (1972).
[CrossRef]

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

Berry, H. G.

Blanton, T. N.

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1988).

Bradley, D. D. C.

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

Burch, J. M.

A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975).

Chandrasekhar, S.

S. Chandrasekhar, J. S. Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

Chen, H. P.

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

Chen, S. H.

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

Coles, H. J.

H. F. Gleeson, H. J. Coles, “Optical properties of chiral nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 170, 9–34 (1989).

De Vries, H.

H. De Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
[CrossRef]

Dmitrienko, V. D.

V. A. Belyakov, V. D. Dmitrienko, “Theory of the optical properties of cholesteric liquid crystals,” Sov. Phys. Solid State 15, 1811–1815 (1974).

Doane, J. W.

W. D. St. John, Z. J. Lu, J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys. 78, 5253–5265 (1995).
[CrossRef]

Fox, A. M.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

Fududa, A.

H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Gabrielse, G.

Gerrard, A.

A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975).

Gevorgyan, A. A.

A. A. Gevorgyan, “Reflection and transmission of light in medium/cholesteric/substrate and glass(1)/Cholesteric/Glass(2) system,” Tech. Phys. 45, 1170–1176 (2000).
[CrossRef]

Gleeson, H. F.

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

H. F. Gleeson, H. J. Coles, “Optical properties of chiral nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 170, 9–34 (1989).

Good, R. H.

Grell, M.

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

Guillou, J. P. S.

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

Hara, M.

H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

He, Z.

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. Part 1 36, 2760–2764 (1997).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).

Hodgkinson, I. J.

I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal–crystal interface,” J. Comp. Physiol. 133, 75–83 (1997).
[CrossRef]

Hood, P. J.

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

Jacobs, S. D.

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Singapore, 1995).

John, W. D. St.

W. D. St. John, Z. J. Lu, J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys. 78, 5253–5265 (1995).
[CrossRef]

Karali, A.

Kassam, S.

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal–crystal interface,” J. Comp. Physiol. 133, 75–83 (1997).
[CrossRef]

Kats, E. I.

E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).

Katsis, D.

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

Kelly, S. M.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

Kim, J. H.

J. H. Kim, C. Rosenblatt, “Optical retardation of rub-induced scratches in a polyimide-treated substrate,” Appl. Phys. Lett. 72, 1917–1919 (1998).
[CrossRef]

Kirar, I.

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

Kuze, E.

H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Lakhtakia, A.

I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

A. Lakhtakia, “Dielectric sculptured thin films for polarization discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
[CrossRef]

Lin-Chung, P. J.

Livingston, A. E.

Lu, Z. J.

W. D. St. John, Z. J. Lu, J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys. 78, 5253–5265 (1995).
[CrossRef]

Mastrangelo, J. C.

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

McCall, M. W.

I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Singapore, 1995).

Neher, D.

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

O’Neill, M.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

Oda, M.

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

Ouchi, Y.

H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Prasad, J. S.

S. Chandrasekhar, J. S. Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

Richards, G. J.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

Roberts, N. W.

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

Rosenblatt, C.

J. H. Kim, C. Rosenblatt, “Optical retardation of rub-induced scratches in a polyimide-treated substrate,” Appl. Phys. Lett. 72, 1917–1919 (1998).
[CrossRef]

Sato, S.

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. Part 1 36, 2760–2764 (1997).
[CrossRef]

Scheffer, T. J.

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

Schmid, A. W.

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

Takezeo, H.

H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Teitler, S.

Tsutsui, T.

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

Watson, S. J.

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

Whitehead, K. S.

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Singapore, 1995).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1988).

Woon, K. L.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

Wu, Q.

I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Wu, Q. H.

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal–crystal interface,” J. Comp. Physiol. 133, 75–83 (1997).
[CrossRef]

Xu, F.

M. Xu, F. Xu, D. K. Yang, “Effect of cell structure of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

Xu, M.

M. Xu, F. Xu, D. K. Yang, “Effect of cell structure of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

Yang, D. K.

M. Xu, F. Xu, D. K. Yang, “Effect of cell structure of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

Yeh, P.

Zhou, Y.

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. Part 1 36, 2760–2764 (1997).
[CrossRef]

Acta Crystallogr.

H. De Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219–226 (1951).
[CrossRef]

Adv. Mater.

M. Grell, M. Oda, K. S. Whitehead, A. Asimakis, D. Neher, D. D. C. Bradley, “A compact device for the efficient, electrically driven generation of highly circularly polarized light,” Adv. Mater. 13, 577–580 (2001).
[CrossRef]

H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, P. J. Hood, “Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors,” Adv. Mater. 12, 1283–1286 (2000).
[CrossRef]

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, A. M. Fox, “Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye,” Adv. Mater. 15, 1555–1558 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. H. Kim, C. Rosenblatt, “Optical retardation of rub-induced scratches in a polyimide-treated substrate,” Appl. Phys. Lett. 72, 1917–1919 (1998).
[CrossRef]

J. Appl. Phys.

M. Xu, F. Xu, D. K. Yang, “Effect of cell structure of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

W. D. St. John, Z. J. Lu, J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys. 78, 5253–5265 (1995).
[CrossRef]

J. Comp. Physiol.

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal–crystal interface,” J. Comp. Physiol. 133, 75–83 (1997).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

H. Takezeo, Y. Ouchi, M. Hara, A. Fududa, E. Kuze, “Experimental studies on reflection spectra in monodomian cholesteric liquid crystals cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Jpn. J. Appl. Phys. Part 1

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. Part 1 36, 2760–2764 (1997).
[CrossRef]

Mol. Cryst. Liq. Cryst.

N. W. Roberts, J. P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, E. O. Arikainen, “Optical properties of cholesteric materials used in surface stablised cholesteric texture devices,” Mol. Cryst. Liq. Cryst. 411, 1099–1111 (2004).
[CrossRef]

S. Chandrasekhar, J. S. Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

H. F. Gleeson, H. J. Coles, “Optical properties of chiral nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 170, 9–34 (1989).

Nature

S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, T. N. Blanton, “Circularly polarized light gen-erated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature 397, 506–508 (1999).
[CrossRef]

Opt. Commun.

I. J. Hodgkinson, Q. Wu, M. Arnod, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

Opt. Eng.

A. Lakhtakia, “Dielectric sculptured thin films for polarization discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Sov. Phys. JETP

E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).

Sov. Phys. Solid State

V. A. Belyakov, V. D. Dmitrienko, “Theory of the optical properties of cholesteric liquid crystals,” Sov. Phys. Solid State 15, 1811–1815 (1974).

Tech. Phys.

A. A. Gevorgyan, “Reflection and transmission of light in medium/cholesteric/substrate and glass(1)/Cholesteric/Glass(2) system,” Tech. Phys. 45, 1170–1176 (2000).
[CrossRef]

Other

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Singapore, 1995).

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1988).

A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975).

O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Path of rays through the liquid crystal cell. E trans and E refl are given by M system E in and R system E in , respectively.

Fig. 2
Fig. 2

Chemical structure of compound a.

Fig. 3
Fig. 3

Experimental setup of the spectroscopic Stokes polarimeter.

Fig. 4
Fig. 4

Circular polarization ratio for (a) cell A, (b) cell B.

Fig. 5
Fig. 5

Stokes-parameter analysis of unpolarized light transmitted through cell A.

Fig. 6
Fig. 6

Stokes-parameter analysis of unpolarized light transmitted through cell B.

Fig. 7
Fig. 7

Experimental and theoretical values for cell A as a function of wavelength of (a) s 1 / s 0 , (b) s 2 / s 0 , (c) s 3 / s 0 .

Fig. 8
Fig. 8

Influence of refractive-index mismatch for an air/substrate/CNLC/substrate/air system of (a) s 1 / s 0 , (b) s 2 / s 0 , (c) s 3 / s 0 .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

s 0 = E ox 2 + E oy 2 ,
s 1 = E ox 2 - E oy 2 ,
s 2 = 2 E ox E oy cos   δ ,
s 3 = 2 E ox E oy sin   δ ,
s 0 = s pol + s unpol
P = I pol I tot = ( s 1 2 + s 2 2 + s 3 2 ) 1 / 2 s 0 .
I R = 1 2 ( s 1 2 + s 2 2 + s 3 2 ) 1 / 2 + 1 2 s 3 + I unpol .
ψ ( z ) z = ik 0 Δ ( z ) ψ ( z ) ,
Δ ( z ) = 0 1 - k x 2 33 0 0 + δ   cos   2 β z 0 δ   sin   2 β z 0 0 0 0 1 δ   sin   2 β z 0 33 - k x 2 - δ   cos   2 β z 0 ,
ψ ( z + h ) = exp [ ik 0 Δ ( z ) h ] ψ ( z ) .
ψ = Ψ a .
K ( h ) = exp ( i ϕ 1 + ) 0 0 0 0 exp ( i ϕ 1 - ) 0 0 0 0 exp ( i ϕ 2 + ) 0 0 0 0 exp ( i ϕ 2 - ) ,
Ψ iso = 1 - 1 0 0 n   cos   θ n   cos   θ 0 0 0 0 1 1 0 0 n cos   θ - n cos   θ .
M system = ψ glass - 1 ψ ITO K ITO ψ ITO - 1 ψ poly K poly ψ poly - 1 × LC N ψ poly K poly ψ poly - 1 ψ ITO K ITO ψ ITO - 1 ψ glass ,
a r = M system a t ,
E 1 = T glass T system E in ,
E 2 = T glass R system R glass T system E in ,
s i = E ¯ T A i E ,
A 0 = 1 0 0 1 ,
A 1 = 1 0 0 - 1 , A 2 = 0 1 1 0 , A 3 = 0 - i i 0 .

Metrics