Abstract

Laser satellite communication (LSC) uses free space as a propagation medium for various applications, such as intersatellite communication or satellite networking. An LSC system includes a laser transmitter and an optical receiver. For communication to occur, the line of sight of the transmitter and the receiver must be aligned. However, mechanical vibration and electronic noise in the control system reduce alignment between the transmitter laser beam and the receiver field of view (FOV), which results in pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. An LSC system is considered in which the optical preamplifier is incorporated into the receiver, and a bit error probability (BEP) model is derived that takes into account the statistics of the pointing error as well as the optical amplifier and communication system parameters. The model and the numerical calculation results indicate that random pointing errors of σχ2G>0.05 penalize communication performance dramatically for all combinations of optical amplifier gains and noise figures that were calculated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Polishuk, S. Arnon, “Optimization of laser satellite communication with an optical pre-amplifier,” J. Opt. Soc. Am. A 21, 1307–1315 (2004).
    [CrossRef]
  2. M. Toyoshima, T. Jono, K. Nakagawa, A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A 19, 567–571 (2002).
    [CrossRef]
  3. J. C. Ricklin, F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002).
    [CrossRef]
  4. T. Ohtsuki, “Performance analysis of atmospheric optical PPM CDMA systems,” J. Lightwave Technol. 21, 406–411 (2003).
    [CrossRef]
  5. X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
    [CrossRef]
  6. D. Bushuev, D. Kedar, S. Arnon, “Analyzing performance of nano-satellite cluster-detector array receiver laser communication,” J. Lightwave Technol. 21, 447–455 (2003).
    [CrossRef]
  7. S. Arnon, “Optical wireless communication,” invited chapter in the Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, New York, 2003), pp. 1866–1886.
  8. S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).
  9. S. Arnon, “Optimization of optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003).
    [CrossRef]
  10. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
    [CrossRef]
  11. V. A. Skormin, M. A. Tascillo, T. E. Busch, “Demonstra-tion of a jitter rejection technique for free-space laser com-munication,” IEEE Trans. Aero. Electron. Syst. 33, 568–576 (1997).
    [CrossRef]
  12. S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering Press, Bellingham, Wash., 1997).
  13. E. Desurvire, Erbium Doped Fiber Amplifier—Principles and Applications (Wiley, New York, 1994).
  14. G. P. Agrawal, Fiber Optic Communication (Wiley, New York, 1997).
  15. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, London, 1987), p. 187.

2004 (1)

2003 (3)

2002 (3)

1997 (1)

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Demonstra-tion of a jitter rejection technique for free-space laser com-munication,” IEEE Trans. Aero. Electron. Syst. 33, 568–576 (1997).
[CrossRef]

1989 (1)

C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber Optic Communication (Wiley, New York, 1997).

Alexander, S. B.

S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering Press, Bellingham, Wash., 1997).

Arnon, S.

A. Polishuk, S. Arnon, “Optimization of laser satellite communication with an optical pre-amplifier,” J. Opt. Soc. Am. A 21, 1307–1315 (2004).
[CrossRef]

S. Arnon, “Optimization of optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003).
[CrossRef]

D. Bushuev, D. Kedar, S. Arnon, “Analyzing performance of nano-satellite cluster-detector array receiver laser communication,” J. Lightwave Technol. 21, 447–455 (2003).
[CrossRef]

S. Arnon, “Optical wireless communication,” invited chapter in the Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, New York, 2003), pp. 1866–1886.

Busch, T. E.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Demonstra-tion of a jitter rejection technique for free-space laser com-munication,” IEEE Trans. Aero. Electron. Syst. 33, 568–576 (1997).
[CrossRef]

Bushuev, D.

Casey, W. L.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).

Chen, C.

C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Davidson, F. M.

Desurvire, E.

E. Desurvire, Erbium Doped Fiber Amplifier—Principles and Applications (Wiley, New York, 1994).

Gardner, C. S.

C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Jono, T.

Kahn, J. M.

X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

Kedar, D.

Lambert, S. G.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).

Nakagawa, K.

Ohtsuki, T.

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, London, 1987), p. 187.

Polishuk, A.

Ricklin, J. C.

Skormin, V. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Demonstra-tion of a jitter rejection technique for free-space laser com-munication,” IEEE Trans. Aero. Electron. Syst. 33, 568–576 (1997).
[CrossRef]

Tascillo, M. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Demonstra-tion of a jitter rejection technique for free-space laser com-munication,” IEEE Trans. Aero. Electron. Syst. 33, 568–576 (1997).
[CrossRef]

Toyoshima, M.

Yamamoto, A.

Zhu, X.

X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

IEEE Trans. Aero. Electron. Syst. (1)

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Demonstra-tion of a jitter rejection technique for free-space laser com-munication,” IEEE Trans. Aero. Electron. Syst. 33, 568–576 (1997).
[CrossRef]

IEEE Trans. Commun. (2)

C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

IEEE Trans. Wireless Commun. (1)

S. Arnon, “Optimization of optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (3)

Other (6)

S. Arnon, “Optical wireless communication,” invited chapter in the Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, New York, 2003), pp. 1866–1886.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).

S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering Press, Bellingham, Wash., 1997).

E. Desurvire, Erbium Doped Fiber Amplifier—Principles and Applications (Wiley, New York, 1994).

G. P. Agrawal, Fiber Optic Communication (Wiley, New York, 1997).

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, London, 1987), p. 187.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser satellite network.

Fig. 2
Fig. 2

Laser satellite communication system with optical preamplifier.

Fig. 3
Fig. 3

BEP as a function of σ 2 G for three values of optical amplifier gain.

Fig. 4
Fig. 4

BEP as a function of σ 2 G for three values of optical amplifier noise figure.

Fig. 5
Fig. 5

Power penalty as a function of σ 2 G for three values of optical amplifier noise figure. The BEP is fixed at 10 - 9 .

Tables (1)

Tables Icon

Table 1 Fundamental Parameters of the Calculation

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

f ( θ V ) = 1 2 π σ V exp - ( θ V - μ V ) 2 2 σ V 2 ,
f ( θ H ) = 1 2 π σ H exp - ( θ H - μ H ) 2 2 σ H 2 ,
θ = θ V 2 + θ H 2 .
σ θ = σ V = σ H ,
p ( θ ,   ϕ ) = θ σ θ 2 exp θ 2 + ϕ 2 2 σ θ 2 I 0 θ ϕ σ θ 2 ,
f ( θ R ) = θ R σ θ R 2 exp - θ R 2 2 σ θ R 2 ,
f ( θ T ) = θ T σ θ T 2 exp - θ T 2 2 σ θ T 2 ,
P R ( θ T ,   θ R ) = G o P T η T η R λ 4 π Z 2 G T G R L T ( θ T ) L R ( θ R ) ,
G T π D T λ 2 ,
G R π D R λ 2 ,
L T ( θ T ) = exp ( - G T θ T 2 )
L R ( θ R ) = exp ( - G R θ R 2 ) .
P R ( θ T ,   θ R )
= G o P T η T η R λ 4 π Z 2 G 2 exp [ - G ( θ T 2 + θ R 2 ) ] .
χ = θ T 2 + θ R 2 ,
α = P T η T η R L a λ 4 π Z 2 .
P R ( χ ) = G o α G 2 exp ( - G χ ) .
σ T = σ R = σ χ .
f ( χ ) = a χ   exp - χ 2 σ χ 2 U ( χ ) ,
a = 1 ( σ χ 2 ) 4 Γ ( 2 ) .
Γ ( x ) = 0 t x - 1 exp ( - t ) d t , 1 x 2 .
Γ ( x + 1 ) = x Γ ( x ) .
R = η q h ν .
σ S × ASE 2 ( χ ) = 4 Rqn sp η ( G o - 1 ) η in η out 2 P R ( χ ) B ,
n sp F n / 2 ,
σ ASE × ASE 2 = 4 [ n sp η ( G o - 1 ) q η out ] 2 B o B ,
P ( y / off ) = 1 2 π σ 0 2 exp - y 2 2 σ 0 2 ,
P ( y / on ,   χ ) = 1 { 2 π [ σ 1 2 ( χ ) + σ 0 2 ] } 1 / 2 × exp - [ y - RP R ( χ ) ] 2 2 [ σ 1 2 ( χ ) + σ 0 2 ] ,
σ 0 2 = σ ASE × ASE 2 ,
σ 1 2 ( χ ) = σ S × ASE 2 ( χ ) .
s ˆ = max s P ( y / s ) P ( s ) P ( y ) ,
Λ ( y ,   χ ) = P ( y / on ,   χ ) P ( y / off ) Decide 1 > < Decide 0 1 ,
BEP = - [ P ( on ) P ( off / on ,   χ ) + P ( off ) P ( on / off ,   χ ) ] f χ ( χ ) d χ ,
P ( off / on ,   χ ) = Λ ( y , χ ) < 1 P ( y / on ,   χ ) dy
P ( on / off ,   χ ) = Λ ( y , χ ) > 1 P ( y / off ) dy ,
y th 2 σ 1 2 ( χ ) 2 σ 0 2 [ σ 1 2 ( χ ) + σ 0 2 ] + y th RP R ( χ ) [ σ 1 2 ( χ ) + σ 0 2 ] - [ RP R ( χ ) ] 2 2 [ σ 1 2 ( χ ) + σ 0 2 ] + ln σ 0 2 [ σ 1 2 ( χ ) + σ 0 2 ]
= 0 .
BEP = 1 2 - - y th 1 2 π [ σ 1 2 ( χ ) + σ 0 2 ] × exp - [ y - RP R ( χ ) ] 2 2 [ σ 1 2 ( χ ) + σ 0 2 ] d y + y th 1 2 π σ 0 2 × exp - y 2 2 σ 0 2 d y a χ   exp - χ 2 σ χ 2 U ( χ ) d χ .
BEP = 1 2 - - y th 1 2 π [ σ 1 2 ( v σ χ 2 ) + σ 0 2 ] × exp - [ y - RP R ( v σ χ 2 ) ] 2 2 [ σ 1 2 ( v σ χ 2 ) + σ 0 2 ] d y + y th 1 2 π σ 0 2 exp - y 2 2 σ 0 2 d y v × exp ( - v ) U ( v ) d v .
BEP = 1 4 0 erfc y th - RP R ( v σ χ 2 ) 2 [ σ 1 2 ( v σ χ 2 ) + σ 0 2 ] + erfc y th 2 σ 0 v   exp ( - v ) d v ,
erfc ( x ) = 2 π x exp ( - y 2 ) d y .

Metrics