Abstract

A novel formalism for determining the source-induced noise in Stokes parameter measurements is derived for sources with Gaussian statistics. The formalism is based on a concise expression for the autocovariance functions of the Stokes parameters in terms of the second-order correlation properties of the optical field. At the output of an optical system, source-induced noise can result not only from the intensity fluctuations of the source but also from phase or polarization fluctuations. To describe the effect of the system, another formalism for the propagation of the second-order correlation properties of the optical field is derived. We apply the formalisms to analyze source-induced noise at the output of a birefringent medium, and in coherence-multiplexing networks.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (71)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription