Abstract

Beam profiles that consist of a sum of complex-Gaussian functions, a sum of polynomial-Gaussian functions and a sum of multi-Gaussian functions offset by some fixed amount are proposed as three types of model for a hard-aperture function. By expanding an aperture function into these models, approximate analytical propagation equations for a Gaussian beam through an apertured ABCD optical system are obtained. Comparison among these models themselves and among propagation characteristics of a Gaussian beam through these models are made. It is shown that the first and third types of model for a hard-aperture function are more suitable than the second type, in terms of calculation efficiency and simulation results, for application to such diffraction problems. Moreover, there are some differences in the applicability of the first and the third models.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription