Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Orientation-averaged light-extinction characteristics of compound particles including aggregate effects

Not Accessible

Your library or personal account may give you access

Abstract

Orientation-averaged light-extinction characteristics of compound sulfate–carbon-soot particles have been analyzed with a discrete-dipole algorithm (ddscat code) for r1/r2 (ratio of primary-particle radius to secondary-particle radius) in the range 7 to 1 and for wavelengths from 0.4 to 0.8 μm. It was found that compound particles above a particle radius of approximately 0.2 μm exhibit light-extinction characteristics that closely match those of a pure sulfate particle. The shielding of the carbon particle by the primary particle apparently reduces the absorption effect of the soot particle over the range of all possible orientations. In light of the fact that soot particles tend to be small in comparison with host sulfate particles, the light-extinction characteristics of compound particles are dictated by the optical properties of the host particles. This result has been applied for aerosol aggregates with log-normal size distributions. For r1/r22 the aggregate extinction coefficient of a group of compound particles remains within 12% of that of a group consisting only of sulfate particles. This allows for effective calculation of the overall aerosol light extinction on the basis of the optical and geometrical properties of the constituent particles without having to include a compound-geometry effect.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Light scattering and absorption by soot in the presence of sulfate aerosols

Melina P. Ioannidou, Ioanna I. Bakatsoula, and Dimitris P. Chrissoulidis
Appl. Opt. 39(24) 4205-4213 (2000)

Effects of mixing states on the multiple-scattering properties of soot aerosols

Tianhai Cheng, Yu Wu, Xingfa Gu, and Hao Chen
Opt. Express 23(8) 10808-10821 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved