Abstract

Orientation-averaged light-extinction characteristics of compound sulfate–carbon-soot particles have been analyzed with a discrete-dipole algorithm (ddscat code) for r1/r2 (ratio of primary-particle radius to secondary-particle radius) in the range 7 to 1 and for wavelengths from 0.4 to 0.8 μm. It was found that compound particles above a particle radius of approximately 0.2 μm exhibit light-extinction characteristics that closely match those of a pure sulfate particle. The shielding of the carbon particle by the primary particle apparently reduces the absorption effect of the soot particle over the range of all possible orientations. In light of the fact that soot particles tend to be small in comparison with host sulfate particles, the light-extinction characteristics of compound particles are dictated by the optical properties of the host particles. This result has been applied for aerosol aggregates with log-normal size distributions. For r1/r22 the aggregate extinction coefficient of a group of compound particles remains within 12% of that of a group consisting only of sulfate particles. This allows for effective calculation of the overall aerosol light extinction on the basis of the optical and geometrical properties of the constituent particles without having to include a compound-geometry effect.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000).
  2. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Non-sphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995).
    [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observations,” Appl. Opt. 33, 7206–7225 (1994).
    [CrossRef] [PubMed]
  4. S. C. Hill, A. C. Hill, P. W. Barber, “Light scattering by size/shape distributions of soil particles and spheroids,” Appl. Opt. 23, 1025–1031 (1984).
    [CrossRef] [PubMed]
  5. I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101, 19245–19250 (1996).
    [CrossRef]
  6. R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determination of Mueller scattering matrices for non-spherical particles,” Appl. Opt. 17, 2700–2710 (1978).
    [CrossRef] [PubMed]
  7. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. II. Calculations for external aggregation,” J. Opt. Soc. Am. A 12, 881–892 (1995).
    [CrossRef]
  8. L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
    [CrossRef]
  9. J. Podjimek, “Physical properties of coarse aerosol particles and haze elements in polluted urban-marine environment,” J. Aerosol Sci. 21, 299–308 (1990).
    [CrossRef]
  10. P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
    [CrossRef]
  11. C. Xiong, S. K. Friedlander, “Morphological properties of atmospheric aerosol aggregates,” Proc. Natl. Acad. Sci. U.S.A. 98, 11851–11856 (2001).
    [CrossRef] [PubMed]
  12. B. T. Draine, P. J. Flatau, “User guide for the discrete dipole approximation code ddscat (Version 5a10),” (2000), p. 1 http://www.lanl.gov/abs/astro-ph/0008151v3 .
  13. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering approximations,” J. Opt. Soc. Am. A 11, 1491 (1994).
    [CrossRef]

2002 (1)

L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
[CrossRef]

2001 (1)

C. Xiong, S. K. Friedlander, “Morphological properties of atmospheric aerosol aggregates,” Proc. Natl. Acad. Sci. U.S.A. 98, 11851–11856 (2001).
[CrossRef] [PubMed]

1996 (2)

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101, 19245–19250 (1996).
[CrossRef]

1995 (2)

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Non-sphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995).
[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. II. Calculations for external aggregation,” J. Opt. Soc. Am. A 12, 881–892 (1995).
[CrossRef]

1994 (2)

1990 (1)

J. Podjimek, “Physical properties of coarse aerosol particles and haze elements in polluted urban-marine environment,” J. Aerosol Sci. 21, 299–308 (1990).
[CrossRef]

1984 (1)

1978 (1)

Barber, P. W.

Cai, X.

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Carlson, B. E.

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Non-sphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995).
[CrossRef]

Dick, W. D.

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Draine, B. T.

Flatau, P. J.

Friedlander, S. K.

C. Xiong, S. K. Friedlander, “Morphological properties of atmospheric aerosol aggregates,” Proc. Natl. Acad. Sci. U.S.A. 98, 11851–11856 (2001).
[CrossRef] [PubMed]

Fuller, K. A.

Hanson, A.

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Hill, A. C.

Hill, S. C.

Huang, P.-F.

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Huffman, D. R.

Hunt, A. J.

Lacis, A. A.

L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
[CrossRef]

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Non-sphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995).
[CrossRef]

Litchy, M.

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Liu, L.

L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
[CrossRef]

Macke, A.

L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
[CrossRef]

McMurry, P. H.

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Menon, S.

L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
[CrossRef]

Mishchenko, M. I.

L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
[CrossRef]

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Non-sphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995).
[CrossRef]

M. I. Mishchenko, L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observations,” Appl. Opt. 33, 7206–7225 (1994).
[CrossRef] [PubMed]

Perry, R. J.

Podjimek, J.

J. Podjimek, “Physical properties of coarse aerosol particles and haze elements in polluted urban-marine environment,” J. Aerosol Sci. 21, 299–308 (1990).
[CrossRef]

Tang, I. N.

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101, 19245–19250 (1996).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Non-sphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995).
[CrossRef]

M. I. Mishchenko, L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observations,” Appl. Opt. 33, 7206–7225 (1994).
[CrossRef] [PubMed]

Turpin, B. J.

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Xiong, C.

C. Xiong, S. K. Friedlander, “Morphological properties of atmospheric aerosol aggregates,” Proc. Natl. Acad. Sci. U.S.A. 98, 11851–11856 (2001).
[CrossRef] [PubMed]

Appl. Opt. (3)

Atmos. Environ. (1)

P. H. McMurry, M. Litchy, P.-F. Huang, X. Cai, B. J. Turpin, W. D. Dick, A. Hanson, “Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA,” Atmos. Environ. 30, 101–108 (1996).
[CrossRef]

Geophys. Res. Lett. (1)

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Non-sphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995).
[CrossRef]

J. Aerosol Sci. (1)

J. Podjimek, “Physical properties of coarse aerosol particles and haze elements in polluted urban-marine environment,” J. Aerosol Sci. 21, 299–308 (1990).
[CrossRef]

J. Geophys. Res. (1)

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101, 19245–19250 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Quant. Spectrosc. Radiat. Transf. (1)

L. Liu, M. I. Mishchenko, S. Menon, A. Macke, A. A. Lacis, “The effect of black carbon on scattering and absorp--tion of solar radiation by cloud droplets,” J. Quant. Spectrosc. Radiat. Transf. 74, 195–204 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Xiong, S. K. Friedlander, “Morphological properties of atmospheric aerosol aggregates,” Proc. Natl. Acad. Sci. U.S.A. 98, 11851–11856 (2001).
[CrossRef] [PubMed]

Other (2)

B. T. Draine, P. J. Flatau, “User guide for the discrete dipole approximation code ddscat (Version 5a10),” (2000), p. 1 http://www.lanl.gov/abs/astro-ph/0008151v3 .

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Extinction- and absorption-efficiency factors as a function of the target orientation angle.

Fig. 2
Fig. 2

Extinction-efficiency factor for compound particles in comparison with sulfate and carbon particles.

Fig. 3
Fig. 3

Effect of the wavelength on the extinction-efficiency factors.

Tables (1)

Tables Icon

Table 1 Aggregate Light-Extinction Efficiency Factor ( Q e , T ) S / C for Various r 1 / r 2 a

Metrics