Abstract

A modified method for maximum-likelihood deconvolution of astronomical adaptive optics images is presented. By parametrizing the anisoplanatic character of the point-spread function (PSF), a simultaneous optimization of the spatially variant PSF and the deconvolved image can be performed. In the ideal case of perfect information, it is shown that the algorithm is able to perfectly cancel the adverse effects of anisoplanatism down to the level of numerical precision. Exploring two different modes of deconvolution (using object bases of pixel values or stellar field parameters), we then quantify the performance of the algorithm in the presence of Poissonian noise for crowded and noncrowded stellar fields.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription