Abstract

Optical switching effects of a guided-mode resonant grating (GMRG) with a Kerr medium have been simulated with the nonlinear finite differential time domain (FDTD) method. An asymmetric waveguide grating with a large second spatial harmonic component has been proposed for the optical switch. Resonant reflection occurs at both of the band-edge wavelengths. These wavelengths are used for the pump light and the probe light. The enhanced electric field of the pump light changes the resonant wavelength for the probe light as a result of the Kerr effect. We designed the GMRG with resonant wavelengths of 1489.6 and 1630 nm, which were used for the pump light and the probe light, respectively. When the grating material has a third-order susceptibility χ(3) of 8.5×10-10 esu, the transmittance of the probe light changes from 0 to 80% by increasing the intensity of the pump light from 0 to 60 kW/mm2.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pereira, P. Chak, J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444–446 (2003).
    [CrossRef] [PubMed]
  2. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
    [CrossRef]
  3. H. M. Gibbs, Photonic Crystals: Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).
  4. K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
    [CrossRef]
  5. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  6. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
    [CrossRef]
  7. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998).
    [CrossRef]
  8. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21, 1564–1566 (1996).
    [CrossRef] [PubMed]
  9. R. R. Boye, R. W. Ziolkowski, R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999).
    [CrossRef]
  10. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  11. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997).
    [CrossRef]
  12. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000).
    [CrossRef]
  13. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A 18, 1912–1928 (2001).
    [CrossRef]
  14. F. Lemarchand, S. Sentenac, H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
    [CrossRef]
  15. A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
    [CrossRef]
  16. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  17. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986).
    [CrossRef] [PubMed]
  18. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  19. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  20. T. Hattori, T. Kobayashi, “Femtosecond dephasing in a polydiacetylene film measured by degenerate four-wave mixing with an incoherent nanosecond laser,” Chem. Phys. Lett. 133, 230–234 (1987).
    [CrossRef]

2003 (2)

A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

S. Pereira, P. Chak, J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444–446 (2003).
[CrossRef] [PubMed]

2001 (2)

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A 18, 1912–1928 (2001).
[CrossRef]

K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

1997 (1)

1996 (2)

A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21, 1564–1566 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

1995 (1)

1992 (1)

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

1987 (1)

T. Hattori, T. Kobayashi, “Femtosecond dephasing in a polydiacetylene film measured by degenerate four-wave mixing with an incoherent nanosecond laser,” Chem. Phys. Lett. 133, 230–234 (1987).
[CrossRef]

1986 (1)

1985 (1)

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Baird, W. E.

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Bendickson, J. M.

Bertrand, F.

K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
[CrossRef]

Boye, R. R.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Brundrett, D. L.

Chak, P.

Dansas, P.

K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
[CrossRef]

El Bermil, R.

K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
[CrossRef]

Engel, H.

Friesem, A. A.

Gaylord, T. K.

Gibbs, H. M.

H. M. Gibbs, Photonic Crystals: Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).

Giovannini, H.

Glytsis, E. N.

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Grann, E. B.

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Hattori, T.

T. Hattori, T. Kobayashi, “Femtosecond dephasing in a polydiacetylene film measured by degenerate four-wave mixing with an incoherent nanosecond laser,” Chem. Phys. Lett. 133, 230–234 (1987).
[CrossRef]

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Iwata, K.

A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Kikuta, H.

A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Kobayashi, T.

T. Hattori, T. Kobayashi, “Femtosecond dephasing in a polydiacetylene film measured by degenerate four-wave mixing with an incoherent nanosecond laser,” Chem. Phys. Lett. 133, 230–234 (1987).
[CrossRef]

Kostuk, R. K.

Koynov, K.

K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
[CrossRef]

Lemarchand, F.

Liu, Z. S.

Magnusson, R.

Mashev, L.

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Mizutani, A.

A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Moharam, M. G.

Paraire, N.

K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
[CrossRef]

Pereira, S.

Pommet, D. A.

Popov, E.

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Rosenblatt, D.

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Sentenac, S.

Sharon, A.

Shin, D.

Sipe, J. E.

Steingrueber, R.

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Tibuleac, S.

Tran, P.

Wang, S. S.

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Weber, H. G.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Young, P. P.

Ziolkowski, R. W.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Chem. Phys. Lett. (1)

T. Hattori, T. Kobayashi, “Femtosecond dephasing in a polydiacetylene film measured by degenerate four-wave mixing with an incoherent nanosecond laser,” Chem. Phys. Lett. 133, 230–234 (1987).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Opt. Lett. (4)

Opt. Rev. (1)

A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Phys. Rev. B (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Other (3)

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

H. M. Gibbs, Photonic Crystals: Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of a typical GMRG filter.

Fig. 2
Fig. 2

(a) Symmetric LSH periodic grating structure, (b) calculated spectral reflectance for normally incident TE-polarized light.

Fig. 3
Fig. 3

Reflectance of the symmetric LSH periodic grating structure with respect to the wavelength and angle of incidence.

Fig. 4
Fig. 4

(a) Asymmetric LSH periodic grating structure, (b) calculated spectral reflectance for normally incident TE-polarized light.

Fig. 5
Fig. 5

Reflectance of an asymmetric LSH periodic grating structure with respect to the wavelength and angle of incidence.

Fig. 6
Fig. 6

Time average of the square of the electric field for an incident wavelength of (a) 1630 nm and (b) 1489.6 nm. The dark area indicates high field energy. The incident electric field is 1 V/m.

Fig. 7
Fig. 7

(a) Electric field in a symmetric structure. It has the first (K) and the second-harmonic (2K) periodic component, and the phase difference is 0. Thus the field energy is concentrated on the high-refractive-index side. (b) Electric field when the phase difference is π.

Fig. 8
Fig. 8

(a) Simulation area, (b) square of the electric field, and (c) time-averaged field energy in an asymmetric LSH periodic structure for an incident beam width of 64 mm. The wavelength of the incident light was 1489.6 nm. The electric field was produced after 350-cycle excitation. The dark area indicates high field energy.

Fig. 9
Fig. 9

(a) Transmittance of the probe light and the pump light as a function of the incident intensity of the pump light. (b) Nonlinear refractive index as a function of the incident intensity of the pump light.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w=4λRπΔθ,
PNL(t)=0---χ(3)(t-τ1, t-τ2, t-τ3)×E(τ1)E(τ2)E(τ3)dτ1dτ2dτ3,
PNL(t)=0χ(3)E(t)3.
n=n0+38n0 χ(3)E2,
E(t)=D(t)0(1+χ(1)+χ(3)|E(t)|2),

Metrics