Abstract

We present the first lithography results that use high-numerical-aperture photon sieves as focusing elements in a scanning-optical-beam-lithography system [J. Vac. Sci. Technol. B 21, 2810 (2003)]. Photon sieves are novel optical elements that offer the advantages of higher resolution and improved image contrast compared with traditional diffractive optics such as zone plates [Nature 414, 184 (2001)]. We fabricated the highest-numerical-aperture photon sieves reported to date and experimentally verified their focusing characteristics. We propose two new designs of the photon sieve that have the potential to significantly increase focusing efficiency.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Smith, “A proposal for maskless zone-plate-array lithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
    [CrossRef]
  2. D. Gil, R. Menon, H. I. Smith, “Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
    [CrossRef]
  3. R. Menon, A. Patel, E. E. Moon, H. I. Smith, “An alpha-prototype system for zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).
  4. W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).
  5. L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
    [CrossRef]
  6. Q. Cao, J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20, 1005–1012 (2003).
    [CrossRef]
  7. Q. Cao, J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19, 2387–2393 (2002).
    [CrossRef]
  8. G. J. Dolan, T. A. Fulton, “Canyon lithography,” IEEE Electron Device Lett. 4, 178–180 (1983).
    [CrossRef]

2003 (2)

D. Gil, R. Menon, H. I. Smith, “Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[CrossRef]

Q. Cao, J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20, 1005–1012 (2003).
[CrossRef]

2002 (1)

2001 (1)

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

1996 (1)

H. I. Smith, “A proposal for maskless zone-plate-array lithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
[CrossRef]

1983 (1)

G. J. Dolan, T. A. Fulton, “Canyon lithography,” IEEE Electron Device Lett. 4, 178–180 (1983).
[CrossRef]

Adelung, R.

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

Berndt, R.

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

Cao, Q.

Castaño, F. J.

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Dolan, G. J.

G. J. Dolan, T. A. Fulton, “Canyon lithography,” IEEE Electron Device Lett. 4, 178–180 (1983).
[CrossRef]

Fulton, T. A.

G. J. Dolan, T. A. Fulton, “Canyon lithography,” IEEE Electron Device Lett. 4, 178–180 (1983).
[CrossRef]

Gil, D.

D. Gil, R. Menon, H. I. Smith, “Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[CrossRef]

Jahns, J.

Johnson, R. L.

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

Jung, W.

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Kipp, L.

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

Menon, R.

D. Gil, R. Menon, H. I. Smith, “Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[CrossRef]

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

R. Menon, A. Patel, E. E. Moon, H. I. Smith, “An alpha-prototype system for zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Mondol, M. K.

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Moon, E. E.

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

R. Menon, A. Patel, E. E. Moon, H. I. Smith, “An alpha-prototype system for zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Patel, A.

R. Menon, A. Patel, E. E. Moon, H. I. Smith, “An alpha-prototype system for zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Ross, C. A.

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Seemann, R.

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

Skibowksi, M.

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

Smith, H. I.

D. Gil, R. Menon, H. I. Smith, “Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[CrossRef]

H. I. Smith, “A proposal for maskless zone-plate-array lithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
[CrossRef]

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

R. Menon, A. Patel, E. E. Moon, H. I. Smith, “An alpha-prototype system for zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

IEEE Electron Device Lett. (1)

G. J. Dolan, T. A. Fulton, “Canyon lithography,” IEEE Electron Device Lett. 4, 178–180 (1983).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (2)

H. I. Smith, “A proposal for maskless zone-plate-array lithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
[CrossRef]

D. Gil, R. Menon, H. I. Smith, “Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[CrossRef]

Nature (London) (1)

L. Kipp, M. Skibowksi, R. L. Johnson, R. Berndt, R. Adelung, R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature (London) 414, 184–188 (2001).
[CrossRef]

Other (2)

R. Menon, A. Patel, E. E. Moon, H. I. Smith, “An alpha-prototype system for zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

W. Jung, F. J. Castaño, C. A. Ross, R. Menon, A. Patel, E. E. Moon, M. K. Mondol, H. I. Smith, “Elliptical ring magnetic arrays fabricated using zone-plate-array lithography,” J. Vac. Sci. Technol. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fabrication of an amplitude photon sieve. (a) The fabrication process. Hydrogen silsesquioxane (HSQ) is a negative electron-beam resist that has optical properties similar to fused silica at λ=400 nm. (b) Scanning electron micrograph of the center of an amplitude photon sieve of NA=0.7, operating at λ=400 nm with focal length equal to 40 µm and containing 2214 pinholes.

Fig. 2
Fig. 2

Printing spots with photon sieves. Scanning electron micrographs of single-exposure spots patterned with two photon sieves of the same NA (0.7) but different K. (a) K=2. The exposed spot is approximately half the size of the smallest pinhole on the sieve. (b) K=1.5. The exposed spot is approximately 1.5 times smaller than the smallest pinhole in the sieve. The experiments were performed at λ=400 nm.

Fig. 3
Fig. 3

Printing dense lines and spaces with photon sieves. Scanning electron micrographs of gratings patterned with three photon sieves of the same K (equal to 2), but different NA. (a) NA=0.7. The exposed lines were approximately 270 nm, close to half the size of the smallest pinhole on the sieve (570 nm). (b) NA=0.8. The exposed linewidths were 244 nm, again approximately half the diameter of the smallest pinhole in the sieve (500 nm). (c) NA=0.9. The experiments were performed at λ=400 nm.

Metrics