Abstract

We report the first experimental realization of total internal reflection (TIR) diffraction gratings. Performance of less than 0.7-dB insertion loss (IL) for both TE and TM polarizations and 0.5-dB polarization-dependent loss (PDL) are predicted over a 50-nm spectral bandwidth with simultaneous fabrication tolerances on the depth and the duty cycle of binary gratings of ±5% and ±14%, respectively. Nineteen gratings were fabricated that met these specifications, yielding IL and PDL values less than 0.6 and 0.2 dB, respectively, across the entire 50-nm bandwidth. Measurements made under the Littrow configuration resulted in high efficiency and low PDL across a 100-nm bandwidth, with up to 100% diffraction efficiency within the experimental measurement error.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, S. Rabe, “Low polarization dependent diffraction grating for wavelength demultiplexing,” Opt. Express 12, 269–275 (2004); www.opticsexpress.org .
    [CrossRef] [PubMed]
  2. E. Popov, L. Mashev, D. Maystre, “Back-side diffraction by relief gratings,” Opt. Commun. 65, 97–100 (1988).
    [CrossRef]
  3. J. R. Marciante, D. H. Raguin, “High-efficiency, high-dispersion diffraction gratings based on total internal reflection,” Opt. Lett. 29, 542–544 (2004).
    [CrossRef] [PubMed]
  4. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
    [CrossRef]
  5. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Boedefeld, W. Theobald, E. Welsch, R. Sauerbrey, H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271 (1999).
    [CrossRef]
  6. S. D. Smith, K. A. McGreer, “Diffraction gratings utilizing total internal reflection facets in Littrow configuration,” IEEE Photonics Technol. Lett. 11, 84–86 (1999).
    [CrossRef]
  7. J. Hecht, Understanding Fiber Optics, 3rd ed. (Prentice Hall, Englewood Cliffs, N.J., 1999).
  8. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  9. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  10. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1991).
  11. See, for example, Nano-Strip by Cyantek Corporation4 ( www.cyantek.com ).
  12. C. Hentschel, D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, Englewood Cliffs, N.J., 1998).
  13. B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
    [CrossRef]
  14. M. T. Gale, “Replication,” in Micro-Optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, Philadelphia, Pa., 1997).
  15. V. Greco, F. Marchesini, G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” Pure Appl. Opt. 3, 85–88 (2001).
    [CrossRef]
  16. J. Haisma, B. A. C. M. Spierings, U. K. P. Biermann, A. A. van Gorkum, “Diversity and feasibility of direct bonding: a survey of a dedicated optical technology,” Appl. Opt. 33, 1154–1169 (1994).
    [CrossRef] [PubMed]
  17. C. Ghita, L. Ghita, “Hardening of quartz optical contact by thermal treatment,” Rev. Sci. Instrum. 43, 1051–1052 (1972).
    [CrossRef]
  18. J. R. Marciante, N. O. Farmiga, J. I. Hirsh, M. S. Evans, H. T. Ta, “Optical measurement of depth and duty cycle for binary diffraction gratings with sub-wavelength features,” Appl. Opt. 42, 3234–3240 (2003).
    [CrossRef] [PubMed]

2004 (2)

2003 (2)

B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
[CrossRef]

J. R. Marciante, N. O. Farmiga, J. I. Hirsh, M. S. Evans, H. T. Ta, “Optical measurement of depth and duty cycle for binary diffraction gratings with sub-wavelength features,” Appl. Opt. 42, 3234–3240 (2003).
[CrossRef] [PubMed]

2001 (1)

V. Greco, F. Marchesini, G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” Pure Appl. Opt. 3, 85–88 (2001).
[CrossRef]

1999 (2)

1997 (1)

1994 (1)

1988 (1)

E. Popov, L. Mashev, D. Maystre, “Back-side diffraction by relief gratings,” Opt. Commun. 65, 97–100 (1988).
[CrossRef]

1982 (1)

1972 (1)

C. Ghita, L. Ghita, “Hardening of quartz optical contact by thermal treatment,” Rev. Sci. Instrum. 43, 1051–1052 (1972).
[CrossRef]

Biermann, U. K. P.

Bischoff, J.

Boedefeld, R.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1991).

Boyd, R. D.

Britten, J. A.

Chow, R.

Derickson, D.

C. Hentschel, D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, Englewood Cliffs, N.J., 1998).

Evans, M. S.

Fan, T. Y.

Farmiga, N. O.

Feit, M. D.

Frankel, B.

Fritze, M.

Fuchs, A.

B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
[CrossRef]

Gale, M. T.

M. T. Gale, “Replication,” in Micro-Optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, Philadelphia, Pa., 1997).

Gaylord, T. K.

Ghita, C.

C. Ghita, L. Ghita, “Hardening of quartz optical contact by thermal treatment,” Rev. Sci. Instrum. 43, 1051–1052 (1972).
[CrossRef]

Ghita, L.

C. Ghita, L. Ghita, “Hardening of quartz optical contact by thermal treatment,” Rev. Sci. Instrum. 43, 1051–1052 (1972).
[CrossRef]

Greco, V.

V. Greco, F. Marchesini, G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” Pure Appl. Opt. 3, 85–88 (2001).
[CrossRef]

Haisma, J.

Hecht, J.

J. Hecht, Understanding Fiber Optics, 3rd ed. (Prentice Hall, Englewood Cliffs, N.J., 1999).

Hehl, K.

Henschel, W.

B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
[CrossRef]

Hentschel, C.

C. Hentschel, D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, Englewood Cliffs, N.J., 1998).

Heyer, H.

Hirsh, J. I.

Hoose, J.

Keast, C.

Kurz, H.

B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
[CrossRef]

Lemme, M.

B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
[CrossRef]

Li, L.

Loewen, E. G.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Marchesini, F.

V. Greco, F. Marchesini, G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” Pure Appl. Opt. 3, 85–88 (2001).
[CrossRef]

Marciante, J. R.

Mashev, L.

E. Popov, L. Mashev, D. Maystre, “Back-side diffraction by relief gratings,” Opt. Commun. 65, 97–100 (1988).
[CrossRef]

Maystre, D.

E. Popov, L. Mashev, D. Maystre, “Back-side diffraction by relief gratings,” Opt. Commun. 65, 97–100 (1988).
[CrossRef]

McGreer, K. A.

S. D. Smith, K. A. McGreer, “Diffraction gratings utilizing total internal reflection facets in Littrow configuration,” IEEE Photonics Technol. Lett. 11, 84–86 (1999).
[CrossRef]

Moharam, M. G.

Mohaupt, U.

Molesini, G.

V. Greco, F. Marchesini, G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” Pure Appl. Opt. 3, 85–88 (2001).
[CrossRef]

Nguyen, H. T.

Palme, M.

Perry, M. D.

Popov, E.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, S. Rabe, “Low polarization dependent diffraction grating for wavelength demultiplexing,” Opt. Express 12, 269–275 (2004); www.opticsexpress.org .
[CrossRef] [PubMed]

E. Popov, L. Mashev, D. Maystre, “Back-side diffraction by relief gratings,” Opt. Commun. 65, 97–100 (1988).
[CrossRef]

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Rabe, S.

Raguin, D. H.

Sauerbrey, R.

Schnabel, B.

Shore, B. W.

Smith, S. D.

S. D. Smith, K. A. McGreer, “Diffraction gratings utilizing total internal reflection facets in Littrow configuration,” IEEE Photonics Technol. Lett. 11, 84–86 (1999).
[CrossRef]

Spierings, B. A. C. M.

Ta, H. T.

Theobald, W.

van Gorkum, A. A.

Vratzov, B.

B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
[CrossRef]

Welsch, E.

Wenke, L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1991).

Yost, D.

Appl. Opt. (3)

IEEE Photonics Technol. Lett. (1)

S. D. Smith, K. A. McGreer, “Diffraction gratings utilizing total internal reflection facets in Littrow configuration,” IEEE Photonics Technol. Lett. 11, 84–86 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2760–2764 (2003).
[CrossRef]

Opt. Commun. (1)

E. Popov, L. Mashev, D. Maystre, “Back-side diffraction by relief gratings,” Opt. Commun. 65, 97–100 (1988).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Pure Appl. Opt. (1)

V. Greco, F. Marchesini, G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” Pure Appl. Opt. 3, 85–88 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Ghita, L. Ghita, “Hardening of quartz optical contact by thermal treatment,” Rev. Sci. Instrum. 43, 1051–1052 (1972).
[CrossRef]

Other (6)

M. T. Gale, “Replication,” in Micro-Optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, Philadelphia, Pa., 1997).

J. Hecht, Understanding Fiber Optics, 3rd ed. (Prentice Hall, Englewood Cliffs, N.J., 1999).

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1991).

See, for example, Nano-Strip by Cyantek Corporation4 ( www.cyantek.com ).

C. Hentschel, D. Derickson, “Insertion loss measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, Englewood Cliffs, N.J., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Depiction of a generic high-dispersion TIR grating. Light is incident from material 1 at angle θi, Λ is the grating period, and K is the grating vector.

Fig. 2
Fig. 2

Calculated optimized grating depth (solid) and peak diffraction efficiency (dashed) of the m=-1 reflected order as a function of grating period for a fused-silica binary diffraction grating with n1=1.444 (fused silica), n2=1 (air), and duty cycle=0.5. The TM-polarized light is incident from material 1 at the Littrow angle, as defined in the text, with a wavelength of 1585 nm.

Fig. 3
Fig. 3

Diffraction efficiency of the m=-1 reflected order as a function of grating depth for select grating periods. The grating and incident light parameters are otherwise identical to those used in Fig. 2.

Fig. 4
Fig. 4

Spectral and angular bandwidths (0.25 and 0.50 dB) as a function of duty cycle for the grating used in Figs. 2 and 3. The spectral bandwidth is obtained by using the Littrow angle of incidence and the optimized depth at 1585 nm, and the angular bandwidth is obtained by using 1585 nm and the optimized depth at the respective Littrow angle. The incident light is TM polarized, and the curves are labeled in the legend.

Fig. 5
Fig. 5

Merit function map of a low-PDL grating with n1=1.444 (fused silica), n2=1 (air), and Λ=714 nm. The light is incident from material 1 at an angle of 48.6° with respect to the normal. The white (gray) zone corresponds to grating depth and duty cycle combinations that pass (fail) the performance specifications of 0.7-dB IL for the average response of the TE and TM polarizations and 0.5-dB PDL over the entire L band.

Fig. 6
Fig. 6

Theoretical performance of a low-PDL grating having a rectangular groove cross section, with n1=1.444 (fused silica), n2=1 (air), depth=630 nm, duty cycle=0.48, and Λ=714 nm. The light is incident from material 1 at an angle of 48.6° with respect to the normal. The curves representing the quantities defined in Eqs. (2) and (3) are labeled.

Fig. 7
Fig. 7

Scanning electron microscopy image of an all-glass TIR grating with 714-nm period. From this image, the depth and the duty cycle can be estimated as 634 nm and 0.46, respectively. The geometry and the scale are shown at the bottom.

Fig. 8
Fig. 8

Experimental configuration for measuring IL and PDL of TIR diffraction gratings. The dotted lines represent the physical light paths for the edges of the L band (1560 and 1610 nm).

Fig. 9
Fig. 9

Measured performance of low-PDL grating with material 1=fused silica, material 2=air, and Λ=714 nm. The light is incident from material 1 at an angle of 48.6° with respect to the normal. The curves representing the quantities defined in Eqs. (2) and (3) are labeled.

Fig. 10
Fig. 10

Measured Littrow performance of low-PDL grating with material 1=fused silica, material 2=air, and Λ=714 nm. The light is incident from material 1 at the Littrow angle for the given wavelength. The symbols are experimental data, and the curves are theoretical calculations for the quantities defined in Eqs. (2) and (3).

Fig. 11
Fig. 11

Scatterplot of PDL versus polarization-averaged TE and TM IL for 19 diffraction gratings. For a given grating, the PDL and the averaged IL are selected at their highest respective values in the L band (1560–1610 nm). The solid circle and the inner dotted lines represent the theoretical performance of the optical design. The outer dotted lines represent the pass–fail boundary of the merit function: <0.7 dB IL for the average response of the TE and TM polarizations and <0.5 dB PDL over the entire L band.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n2/n1<|sin θj|<1,
ILj=-10 log ηj,
PDL=|ILTM-ILTE|,
D=dθmdλdθairdθmnormal=mΛ cos(θm),

Metrics