Abstract

An extension of the recently developed method of intensity diffraction tomography is derived that assumes that the probing field is a spherical wave produced by a point source sufficiently far from the scatterer. A discussion of the method and numerical reconstructions of a simulated three-dimensional scattering object are presented.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), pp. 83–110.
  2. G. Gbur, E. Wolf, “Hybrid diffraction tomography without phase information,” J. Opt. Soc. Am. A 19, 2194–2202 (2002).
    [CrossRef]
  3. G. Gbur, E. Wolf, “Diffraction tomography without phase information,” Opt. Lett. 27, 1890–1892 (2002).
    [CrossRef]
  4. A. J. Devaney, “Generalized projection-slice theorem for fan beam diffraction tomography,” Ultrason. Imaging 7, 264–275 (1985).
    [PubMed]
  5. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  6. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  7. A. J. Devaney, “Diffraction tomography,” in Inverse Methods in Electromagnetic Imaging, Part 2, W. M. Boerner, H. Brand, L. A. Cram, D. T. Gjessing, A. K. Jordan, W. Keydel, G. Schwierz, M. Vogel, eds. (Reidel, Boston, Mass., 1985), pp. 1107–1135.
  8. M. A. Anastasio, X. Pan, “Computationally efficient and statistically robust image reconstruction in three-dimensional diffraction tomography,” J. Opt. Soc. Am. A 17, 391–400 (2000).
    [CrossRef]
  9. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
    [CrossRef]
  10. G. Gbur, E. Wolf, “The information content of the scattered intensity in diffraction tomography,” Info. Sci. 162, 3–20 (2004).
    [CrossRef]
  11. M. Slaney, A. Kak, L. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microwave Theory Tech. 32, 860–874 (1984).
    [CrossRef]
  12. B. Chen, J. J. Stamnes, “Validity of diffraction tomography based on the first-Born and first-Rytov approximations,” Appl. Opt. 37, 2996–3006 (1998).
    [CrossRef]
  13. M. A. Anastasio, X. Pan, “An improved reconstruction algorithm for 3D diffraction tomography using spherical-wave sources,” IEEE Trans. Biomed. Eng. 50, 517–521 (2003).
    [CrossRef] [PubMed]

2004 (1)

G. Gbur, E. Wolf, “The information content of the scattered intensity in diffraction tomography,” Info. Sci. 162, 3–20 (2004).
[CrossRef]

2003 (1)

M. A. Anastasio, X. Pan, “An improved reconstruction algorithm for 3D diffraction tomography using spherical-wave sources,” IEEE Trans. Biomed. Eng. 50, 517–521 (2003).
[CrossRef] [PubMed]

2002 (2)

2000 (1)

1998 (1)

1985 (1)

A. J. Devaney, “Generalized projection-slice theorem for fan beam diffraction tomography,” Ultrason. Imaging 7, 264–275 (1985).
[PubMed]

1984 (1)

M. Slaney, A. Kak, L. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microwave Theory Tech. 32, 860–874 (1984).
[CrossRef]

1983 (1)

Anastasio, M. A.

M. A. Anastasio, X. Pan, “An improved reconstruction algorithm for 3D diffraction tomography using spherical-wave sources,” IEEE Trans. Biomed. Eng. 50, 517–521 (2003).
[CrossRef] [PubMed]

M. A. Anastasio, X. Pan, “Computationally efficient and statistically robust image reconstruction in three-dimensional diffraction tomography,” J. Opt. Soc. Am. A 17, 391–400 (2000).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Chen, B.

Devaney, A. J.

A. J. Devaney, “Generalized projection-slice theorem for fan beam diffraction tomography,” Ultrason. Imaging 7, 264–275 (1985).
[PubMed]

A. J. Devaney, “Diffraction tomography,” in Inverse Methods in Electromagnetic Imaging, Part 2, W. M. Boerner, H. Brand, L. A. Cram, D. T. Gjessing, A. K. Jordan, W. Keydel, G. Schwierz, M. Vogel, eds. (Reidel, Boston, Mass., 1985), pp. 1107–1135.

Gbur, G.

Kak, A.

M. Slaney, A. Kak, L. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microwave Theory Tech. 32, 860–874 (1984).
[CrossRef]

Larsen, L.

M. Slaney, A. Kak, L. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microwave Theory Tech. 32, 860–874 (1984).
[CrossRef]

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).

Pan, X.

M. A. Anastasio, X. Pan, “An improved reconstruction algorithm for 3D diffraction tomography using spherical-wave sources,” IEEE Trans. Biomed. Eng. 50, 517–521 (2003).
[CrossRef] [PubMed]

M. A. Anastasio, X. Pan, “Computationally efficient and statistically robust image reconstruction in three-dimensional diffraction tomography,” J. Opt. Soc. Am. A 17, 391–400 (2000).
[CrossRef]

Slaney, M.

M. Slaney, A. Kak, L. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microwave Theory Tech. 32, 860–874 (1984).
[CrossRef]

Stamnes, J. J.

Teague, M. R.

Wolf, E.

G. Gbur, E. Wolf, “The information content of the scattered intensity in diffraction tomography,” Info. Sci. 162, 3–20 (2004).
[CrossRef]

G. Gbur, E. Wolf, “Diffraction tomography without phase information,” Opt. Lett. 27, 1890–1892 (2002).
[CrossRef]

G. Gbur, E. Wolf, “Hybrid diffraction tomography without phase information,” J. Opt. Soc. Am. A 19, 2194–2202 (2002).
[CrossRef]

E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), pp. 83–110.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).

Appl. Opt. (1)

IEEE Trans. Biomed. Eng. (1)

M. A. Anastasio, X. Pan, “An improved reconstruction algorithm for 3D diffraction tomography using spherical-wave sources,” IEEE Trans. Biomed. Eng. 50, 517–521 (2003).
[CrossRef] [PubMed]

IEEE Trans. Microwave Theory Tech. (1)

M. Slaney, A. Kak, L. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microwave Theory Tech. 32, 860–874 (1984).
[CrossRef]

Info. Sci. (1)

G. Gbur, E. Wolf, “The information content of the scattered intensity in diffraction tomography,” Info. Sci. 162, 3–20 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Ultrason. Imaging (1)

A. J. Devaney, “Generalized projection-slice theorem for fan beam diffraction tomography,” Ultrason. Imaging 7, 264–275 (1985).
[PubMed]

Other (4)

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).

A. J. Devaney, “Diffraction tomography,” in Inverse Methods in Electromagnetic Imaging, Part 2, W. M. Boerner, H. Brand, L. A. Cram, D. T. Gjessing, A. K. Jordan, W. Keydel, G. Schwierz, M. Vogel, eds. (Reidel, Boston, Mass., 1985), pp. 1107–1135.

E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), pp. 83–110.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics