Abstract

A solution to the problem of detecting the tip–tilt modes in multiconjugate adaptive optics (MCAO) with laser guide stars (LGS) is presented. This solution requires the presence of only a single relatively dim natural guide star (NGS) within the reconstructed field of view (FoV). The dim NGS is used for the reconstruction of the tip–tilt modes on the entire FoV, while the tomographic reconstruction of second-order and higher-order modes is made possible by having an LGS constellation with LGSs at different heights. Due to the relatively low brightness required for the tip–tilt NGS and the large corrected FoV (as compared with the case of conventional adaptive optics) the presented solution provides a means to achieve near-diffraction-limited performance of a 10-m-class telescope in the near infrared over a large portion of the sky. Sky coverage calculations assuming median seeing conditions indicate that this technique could be applied to 75% (95%) of the sky, achieving corrections with an average Strehl ratio 0.42(0.33) in the 2.2μm K band across the 1.5 reconstructed FoV.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [CrossRef]
  2. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics Vol. XIX, E. Wolf, ed. (Elsevier, 1981), Chap. 5, pp. 281–376.
    [CrossRef]
  3. D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes,” J. Opt. Soc. Am. A 11, 925–945 (1994).
    [CrossRef]
  4. R. Foy, A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).
  5. M. Tallon, R. Foy, “Adaptive telescope with laser probe—Isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).
  6. F. Rigaut, E. Gendron, “Laser guide star in adaptive optics—The tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).
  7. R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
    [CrossRef]
  8. J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of the ESO Conference on Very Large Telescopes and Their Instrumentation, (European Southern Observatory, Garching, Germany, 1988) pp. 693–703.
  9. R. Ragazzoni, J. Farinato, E. Marchetti, “Adaptive optics for 100-m-class telescopes: new challenges require new solutions,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1076–1087 (2000).
  10. G. N. Lawrence, W. W. Chow, “Wave-front tomography by Zernike polynomial decomposition,” Opt. Lett. 9, 267–269 (1984).
    [CrossRef] [PubMed]
  11. R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).
  12. R. Ragazzoni, E. Marchetti, G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403, 54–56 (2000).
    [CrossRef] [PubMed]
  13. F. Rigaut, B. L. Ellerbroek, R. Flicker, “Principles, limitations and performance of multi-conjugate adaptive optics,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1022–1031 (2000).
  14. M. Le Louarn, M. Tallon, “3D mapping of turbulence: theory,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1066–1073 (2000).
  15. G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).
  16. B. L. Ellerbroek, F. Rigaut, “Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2539–2547 (2001).
    [CrossRef]
  17. B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).
  18. B. Femenía, N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165–1176 (2003).
    [CrossRef]
  19. T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).
  20. R. Flicker, F. Rigaut, B. Ellerbroek, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1032–1043 (2000).
  21. T. Fusco, J. Conan, G. Rousset, L. M. Mugnier, V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001).
    [CrossRef]
  22. B. Femenía, G. Brusa, L. Calero, “Analytical prescription for the Zernike projection matrix in modal tomography,” in preparation (2005).
  23. M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
    [CrossRef]
  24. J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).
  25. G. A. Tyler, D. L. Fried, “Image-position error associated with a quadrant detector,” J. Opt. Soc. Am. 72, 804–808 (1982).
    [CrossRef]
  26. M. P. Cagigal, V. F. Canales, “Generalized Fried parameter after adaptive optics partial wave-front compensation,” J. Opt. Soc. Am. A 17, 903–910 (2000).
    [CrossRef]
  27. N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).
  28. H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).
  29. C. A. Bleau, “Price quotation for a Marconi CCD50 camera,” SciMeasure Analytical Systems Inc., 1123 Zonolite Road, Atlanta, Georgia, 30306 (personal communication, 2003).
  30. M. Carbillet, Laboratoire Universitaire d’Astrophysique de Nice, France (personal communication, 2004).
  31. R. R. Parenti, R. J. Sasiela, “Laser-guide-star systems for astronomical applications,” J. Opt. Soc. Am. A 11, 288–309 (1994).
    [CrossRef]
  32. F. Shi, “Sodium laser guide star experiment with a sum–frequency laser for adaptive optics,” Publ. Astron. Soc. Pac. 113, 366–378 (2001).
    [CrossRef]
  33. L. A. Thompson, S. W. Teare, “Rayleigh laser guide star systems: application to the University of Illinois Seeing Improvement System,” Publ. Astron. Soc. Pac. 114, 1029–1042 (2002).
    [CrossRef]

2005 (1)

M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
[CrossRef]

2004 (1)

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

2003 (1)

B. Femenía, N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165–1176 (2003).
[CrossRef]

2002 (1)

L. A. Thompson, S. W. Teare, “Rayleigh laser guide star systems: application to the University of Illinois Seeing Improvement System,” Publ. Astron. Soc. Pac. 114, 1029–1042 (2002).
[CrossRef]

2001 (3)

2000 (2)

R. Ragazzoni, E. Marchetti, G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403, 54–56 (2000).
[CrossRef] [PubMed]

M. P. Cagigal, V. F. Canales, “Generalized Fried parameter after adaptive optics partial wave-front compensation,” J. Opt. Soc. Am. A 17, 903–910 (2000).
[CrossRef]

1999 (1)

R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).

1994 (2)

1992 (1)

F. Rigaut, E. Gendron, “Laser guide star in adaptive optics—The tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).

1990 (1)

M. Tallon, R. Foy, “Adaptive telescope with laser probe—Isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

1985 (1)

R. Foy, A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).

1984 (1)

1982 (1)

1975 (1)

R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
[CrossRef]

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Angel, J. R. P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Beckers, J. M.

J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of the ESO Conference on Very Large Telescopes and Their Instrumentation, (European Southern Observatory, Garching, Germany, 1988) pp. 693–703.

Bello, D.

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

Bleau, C. A.

C. A. Bleau, “Price quotation for a Marconi CCD50 camera,” SciMeasure Analytical Systems Inc., 1123 Zonolite Road, Atlanta, Georgia, 30306 (personal communication, 2003).

Brusa, G.

B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).

B. Femenía, G. Brusa, L. Calero, “Analytical prescription for the Zernike projection matrix in modal tomography,” in preparation (2005).

G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).

Cagigal, M. P.

Calero, L.

B. Femenía, G. Brusa, L. Calero, “Analytical prescription for the Zernike projection matrix in modal tomography,” in preparation (2005).

Canales, V. F.

Carbillet, M.

M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
[CrossRef]

M. Carbillet, Laboratoire Universitaire d’Astrophysique de Nice, France (personal communication, 2004).

G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).

B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).

Castro, J.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

Chow, W. W.

Chueca, S.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Conan, J.

Conan, J.-M.

T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).

Delgado, J. M.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Devaney, N.

B. Femenía, N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165–1176 (2003).
[CrossRef]

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

Dicke, R. H.

R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
[CrossRef]

Ellerbroek, B.

R. Flicker, F. Rigaut, B. Ellerbroek, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1032–1043 (2000).

Ellerbroek, B. L.

B. L. Ellerbroek, F. Rigaut, “Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2539–2547 (2001).
[CrossRef]

F. Rigaut, B. L. Ellerbroek, R. Flicker, “Principles, limitations and performance of multi-conjugate adaptive optics,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1022–1031 (2000).

Esposito, S.

G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).

B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).

Farinato, J.

R. Ragazzoni, J. Farinato, E. Marchetti, “Adaptive optics for 100-m-class telescopes: new challenges require new solutions,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1076–1087 (2000).

Femenía, B.

M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
[CrossRef]

B. Femenía, N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165–1176 (2003).
[CrossRef]

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).

B. Femenía, G. Brusa, L. Calero, “Analytical prescription for the Zernike projection matrix in modal tomography,” in preparation (2005).

G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).

Fini, L.

M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
[CrossRef]

Flicker, R.

F. Rigaut, B. L. Ellerbroek, R. Flicker, “Principles, limitations and performance of multi-conjugate adaptive optics,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1022–1031 (2000).

R. Flicker, F. Rigaut, B. Ellerbroek, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1032–1043 (2000).

Foy, R.

M. Tallon, R. Foy, “Adaptive telescope with laser probe—Isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

R. Foy, A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).

Fried, D. L.

Fuensalida, J. J.

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Fusco, T.

T. Fusco, J. Conan, G. Rousset, L. M. Mugnier, V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001).
[CrossRef]

T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).

Gaessler, W.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

García-Lorenzo, B. M.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Gendron, E.

F. Rigaut, E. Gendron, “Laser guide star in adaptive optics—The tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).

González-Rodríguez, J. M.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Hayano, Y.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Hoegemann, C. K.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Iye, M.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Kamata, Y.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Kanzawa, T.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Labeyrie, A.

R. Foy, A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).

Lawrence, G. N.

Le Louarn, M.

M. Le Louarn, M. Tallon, “3D mapping of turbulence: theory,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1066–1073 (2000).

Lloyd-Hart, M.

Marchetti, E.

R. Ragazzoni, E. Marchetti, G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403, 54–56 (2000).
[CrossRef] [PubMed]

R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).

R. Ragazzoni, J. Farinato, E. Marchetti, “Adaptive optics for 100-m-class telescopes: new challenges require new solutions,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1076–1087 (2000).

McCarthy, D.

Michau, V.

T. Fusco, J. Conan, G. Rousset, L. M. Mugnier, V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001).
[CrossRef]

T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).

Minowa, Y.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Mugnier, L.

T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).

Mugnier, L. M.

Nakashima, K.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Otsubo, M.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Oya, S.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Parenti, R. R.

Ragazzoni, R.

R. Ragazzoni, E. Marchetti, G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403, 54–56 (2000).
[CrossRef] [PubMed]

R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).

R. Ragazzoni, J. Farinato, E. Marchetti, “Adaptive optics for 100-m-class telescopes: new challenges require new solutions,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1076–1087 (2000).

Reyes, M.

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Riccardi, A.

M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
[CrossRef]

G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).

B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).

Rigaut, F.

B. L. Ellerbroek, F. Rigaut, “Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2539–2547 (2001).
[CrossRef]

R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).

F. Rigaut, E. Gendron, “Laser guide star in adaptive optics—The tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).

R. Flicker, F. Rigaut, B. Ellerbroek, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1032–1043 (2000).

F. Rigaut, B. L. Ellerbroek, R. Flicker, “Principles, limitations and performance of multi-conjugate adaptive optics,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1022–1031 (2000).

Roddier, F.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics Vol. XIX, E. Wolf, ed. (Elsevier, 1981), Chap. 5, pp. 281–376.
[CrossRef]

Rousset, G.

T. Fusco, J. Conan, G. Rousset, L. M. Mugnier, V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001).
[CrossRef]

T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).

Saint-Jacques, D.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Sandler, D. G.

Sasiela, R. J.

Shi, F.

F. Shi, “Sodium laser guide star experiment with a sum–frequency laser for adaptive optics,” Publ. Astron. Soc. Pac. 113, 366–378 (2001).
[CrossRef]

Stahl, S.

Takami, H.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Takato, N.

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Tallon, M.

M. Tallon, R. Foy, “Adaptive telescope with laser probe—Isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

M. Le Louarn, M. Tallon, “3D mapping of turbulence: theory,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1066–1073 (2000).

Teare, S. W.

L. A. Thompson, S. W. Teare, “Rayleigh laser guide star systems: application to the University of Illinois Seeing Improvement System,” Publ. Astron. Soc. Pac. 114, 1029–1042 (2002).
[CrossRef]

Thompson, L. A.

L. A. Thompson, S. W. Teare, “Rayleigh laser guide star systems: application to the University of Illinois Seeing Improvement System,” Publ. Astron. Soc. Pac. 114, 1029–1042 (2002).
[CrossRef]

Tyler, G. A.

Valente, G.

R. Ragazzoni, E. Marchetti, G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403, 54–56 (2000).
[CrossRef] [PubMed]

Verde, M.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Vérinaud, C.

M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
[CrossRef]

Vernin, J.

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

Villegas López, A.

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

Astron. Astrophys. (5)

R. Foy, A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).

M. Tallon, R. Foy, “Adaptive telescope with laser probe—Isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

F. Rigaut, E. Gendron, “Laser guide star in adaptive optics—The tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).

R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).

B. Femenía, N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165–1176 (2003).
[CrossRef]

Astrophys. J. (1)

R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Mon. Not. R. Astron. Soc. (1)

M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005).
[CrossRef]

Nature (1)

R. Ragazzoni, E. Marchetti, G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403, 54–56 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

Publ. Astron. Soc. Jpn. (1)

H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).

Publ. Astron. Soc. Pac. (3)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

F. Shi, “Sodium laser guide star experiment with a sum–frequency laser for adaptive optics,” Publ. Astron. Soc. Pac. 113, 366–378 (2001).
[CrossRef]

L. A. Thompson, S. W. Teare, “Rayleigh laser guide star systems: application to the University of Illinois Seeing Improvement System,” Publ. Astron. Soc. Pac. 114, 1029–1042 (2002).
[CrossRef]

Other (14)

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics Vol. XIX, E. Wolf, ed. (Elsevier, 1981), Chap. 5, pp. 281–376.
[CrossRef]

C. A. Bleau, “Price quotation for a Marconi CCD50 camera,” SciMeasure Analytical Systems Inc., 1123 Zonolite Road, Atlanta, Georgia, 30306 (personal communication, 2003).

M. Carbillet, Laboratoire Universitaire d’Astrophysique de Nice, France (personal communication, 2004).

J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).

N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).

T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).

R. Flicker, F. Rigaut, B. Ellerbroek, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1032–1043 (2000).

B. Femenía, G. Brusa, L. Calero, “Analytical prescription for the Zernike projection matrix in modal tomography,” in preparation (2005).

F. Rigaut, B. L. Ellerbroek, R. Flicker, “Principles, limitations and performance of multi-conjugate adaptive optics,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1022–1031 (2000).

M. Le Louarn, M. Tallon, “3D mapping of turbulence: theory,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1066–1073 (2000).

G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).

B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).

J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of the ESO Conference on Very Large Telescopes and Their Instrumentation, (European Southern Observatory, Garching, Germany, 1988) pp. 693–703.

R. Ragazzoni, J. Farinato, E. Marchetti, “Adaptive optics for 100-m-class telescopes: new challenges require new solutions,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1076–1087 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The left panel shows a geometric optics explanation of the degeneration of second-order modes in an LGS-based MCAO scheme. Two turbulent layers are considered, each introducing pure defocus but of opposite sign. One of the layers is located at an altitude h above the pupil, while the low-altitude layer coincides with the pupil. The center of ( x , y ) coordinates on each layer is the optical axis (z axis), from which we also measure the off-axis angle ( θ ) of the LGS at an altitude H. The right panel shows the geometry of the tomographic problem and illustrates the concept of the metapupil, which comprises the shaded regions enclosed by a circle containing all GS footprints at a given layer.

Fig. 2
Fig. 2

Comparing performances of three arrangements of the LGS in a hybrid LGS-based MCAO system for the case of infinitely bright LGSs (i.e., no photon noise, no readout noise). The top panel shows the evolution of the average SR in the K band ( 2.2 μ m ) across the reconstructed FoV as a function of the conjugation altitude of DM2. In the bottom panel the normalized rms of the average SR on the 83% radius annulus is shown.

Fig. 3
Fig. 3

Performance of the hybrid LGS-based MCAO system as a function of the SNR of the measurements of the NGS barycenter tip–tilt. The top panel shows the evolution of the average SR in the K band ( 2.2 μ m ) across the reconstructed FoV as a function of the conjugation altitude of DM2. As an indication of the SR stability the bottom panel shows the rms of the SR normalized to its average value.

Fig. 4
Fig. 4

Performance of the hybrid LGS-based MCAO system as a function of the SNR of the Shack–Hartmann spot centroid computation (LGS SNR) and the SNR in the NGS barycenter tip–tilt estimation (TT SNR). The top panel shows the evolution of the average SR in the K band ( 2.2 μ m ) across the reconstructed FoV as a function of the conjugation altitude of DM2. As an indication of the SR stability the bottom panel shows the rms of the SR normalized to its average value.

Fig. 5
Fig. 5

Contributions to the variance of the residual wavefront (solid circles) due to the tip–tilt modes (diamonds), second-order modes (triangles), and joint contribution of high-order modes (squares). For each set of symbols the solid curve corresponds to the contributions when moving along the line connecting the FoV center and the location of one of the LGSs at the edge of the reconstructed FoV; the dotted curve corresponds to the variance evolution when moving along a line at 45° with respect to the solid curve. The left panel is for the noiseless case, and the right panel shows the cases for SNR = 10 in both the tip–tilt and LGS wavefront sensing.

Fig. 6
Fig. 6

Probability of finding 1 tip–tilt (TT) NGS of R-band magnitude m R on a 1.5 FoV for different values of the galactic latitude ( b = 90 , 60, 30 and 3°) and galactic longitude ( l = 0 , 90 and 180°). Probabilities of finding a suitable TT NGS with SNR = 10 for the worst l case are shown with dashed curves for the APD and CCD60-based TT sensors; the CCD50 case lies between the APD and CCD60 curves (see Table 2). Slightly lower values are obtained for negative b values. For nearly all the b cases the worst l case was l = 180 ° . Averaging over the whole sky yields sky coverage values of 75% for TT SNR = 20 ( SR K 0.44 ) and 95% for TT SNR = 10 ( SR K 0.33 ) .

Tables (3)

Tables Icon

Table 1 Observatorio del Roque de los Muchachos Seven-layer Atmospheric Turbulence Profile

Tables Icon

Table 2 m R and Probabilities a of Finding a Tip–Tilt Natural Guide Star

Tables Icon

Table 3 Laser Power Requirements a

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

x ( 1 ) = x ( 1 h H ) + θ h ,
ϕ ( x ) = ϕ ( 0 ) ( x ) + ϕ ( x ( 1 ) ) = [ a ( 1 h H ) b ] x 2 + 2 a θ h ( 1 h H ) x + a ( θ h ) 2 .
c 2 = a 2 ( 0 ) + D D ( 1 ) × a 2 ( 1 ) ,
c 3 = a 3 ( 0 ) + D D ( 1 ) × a 3 ( 1 ) ,
c 2 = D 4 { α x 4 π D 2 j = 7 n I j x [ a j ( 0 ) + l j n M j l ( 1 ) a l ( 1 ) ] } j = 4 n M 2 j ( 1 ) a j ( 1 ) ,
c 3 = D 4 { α x 4 π D 2 j = 7 n I j y [ a j ( 0 ) + l j n M j l ( 1 ) a l ( 1 ) ] } j = 4 n M 3 j ( 1 ) a j ( 1 ) .
W θ ( R r ) = j = 2 n b j θ Z j ( r ) ,
b 2 θ = c 2 + j = 4 n M 2 j θ a j ( 1 ) ,
b 3 θ = c 3 + j = 4 n M 3 j θ a j ( 1 ) ,
b l θ = a l ( 0 ) + j = l n M l j θ a j ( 1 ) , for l 4 .
σ = θ B SNR ,
n APD = 6.309 × 10 8 m R 2.5 × Δ t ,
n CCD 50 = 5.962 × 10 8 m R 2.5 × Δ t ,
n CCD 60 = 6.776 × 10 8 m R 2.5 × Δ t .
SNR = n α × n + 4 × σ RON 2 ,
N LGS Na = P E λ γ η A S Δ t C s σ eff 4 π [ sec ( ξ ) H s ] 2 ,
N LGS Ray = P E λ γ η A S Δ t ζ 0 4 π δ z z 2 exp [ z + z t z 0 ] ,
W ( θ ) ( R r ) = i = 2 n b i θ Z i ( r ) ,
W NGS ( R r ) = i = 2 n b i Z i ( r ) ,
α x = 1 π R 2 i = 2 n b i S Z i ( r ) x d x d y ,
α y = 1 π R 2 i = 2 n b i S Z i ( r ) y d x d y ,
b 2 = R 2 ( α x 1 π R 2 i = 7 n b i S Z i ( r ) x d x d y ) ,
b 3 = R 2 ( α y 1 π R 2 i = 7 n b i S Z i ( r ) y d x d y ) .
b 2 = b 2 ( 0 ) + b 2 ( 1 ) = a 2 ( 0 ) + j = 2 n M 2 j ( 1 ) a j ( 1 ) = a 2 ( 0 ) + M 22 ( 1 ) a 2 ( 1 ) + j = 4 n M 2 j ( 1 ) a j ( 1 ) ,
b 3 = b 3 ( 0 ) + b 3 ( 1 ) = a 3 ( 0 ) + j = 2 n M 3 j ( 1 ) a j ( 1 ) = a 3 ( 0 ) + M 33 ( 1 ) a 3 ( 1 ) + j = 4 n M 3 j ( 1 ) a j ( 1 ) ,
c 2 = a 2 ( 0 ) + M 22 ( 1 ) a 2 ( 1 ) = b 2 j = 4 n M 2 j ( 1 ) a j ( 1 ) ,
c 3 = a 3 ( 0 ) + M 33 ( 1 ) a 3 ( 1 ) = b 3 j = 4 n M 3 j ( 1 ) a j ( 1 ) .
c 2 = R 2 ( α x 1 π R 2 j = 7 n I j x [ a j ( 0 ) + l j n M j l ( 1 ) a l ( 1 ) ] ) j = 4 n M 2 j ( 1 ) a j ( 1 ) ,
c 3 = R 2 ( α y 1 π R 2 j = 7 n I j y [ a j ( 0 ) + l j n M j l ( 1 ) a l ( 1 ) ] ) j = 4 n M 2 j ( 1 ) a j ( 1 ) ,
I j x = P x Z j ( r ) d x d y ,
I j y = P y Z j ( r ) d x d y .

Metrics