R. Botet, P. Rannou, “Optical anisotropy of an ensemble of aligned fractal aggregates,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 569–576 (2003).

[CrossRef]

J. C. Auger, B. Stout, “A recursive T-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 533–547 (2003).

[CrossRef]

J. C. Auger, R. G. Barrera, B. Stout, “Scattering efficiencies of aggregates of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).

[CrossRef]

F. Curiel, W. Vargas, R. G. Barrera, “Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra,” Appl. Opt. 41, 5968–5978 (2002).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “Individual and aggregate scattering matrices and cross-sections: conservation laws and reciprocity,” J. Mod. Opt. 48, 2105–2128 (2001).

P. Rannou, C. P. McKay, R. Botet, M. Cabane, “Semi-empirical model of absorption and scattering by isotropic fractal aggregates of sphere,” Planet. Space Sci. 47, 385–396 (1999).

[CrossRef]

E. S. Thiele, R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” J. Am. Ceram. Soc. 81, 469–479 (1998).

[CrossRef]

R. Botet, P. Rannou, M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8796 (1997).

[CrossRef]

A. Rahmani, C. Benoit, R. Jullien, G. Poussigue, A. Sakout, “Light scattering in fractals with scalar and bond-bending models,” J. Phys.: Condens. Matter 9, 2149–2164 (1997).

D. Bhanti, S. Manickavasagam, M. P. Mengüç, “Identification of non-homogeneous spherical particles from their scattering matrix elements,” J. Quant. Spectrosc. Radiat. Transf. 56, 591–607 (1996).

[CrossRef]

M. Quinten, J. Stier, “Absorption of scattered light in colloidal systems of aggregated particles,” Colloid Polym. Sci. 273, 233–241 (1995).

[CrossRef]

A.-K. Hamid, I. R. Ciric, M. Hamid, “Iterative solution of the scattering by a system of multilayered dielectric spheres,” IEEE Trans. Antennas Propag. 41, 172–175 (1992).

S. Fitzwater, J. W. Hook, “Dependent scattering theory: a new approach to predicting scattering in paints,” J. Coat. Technol. 57, 39–47 (1985).

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).

[CrossRef]

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

Lord Rayleigh, “On the electromagnetic theory of light,” Philos. Mag., 1881, pp. 12–81.

J. C. Auger, B. Stout, “A recursive T-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 533–547 (2003).

[CrossRef]

J. C. Auger, R. G. Barrera, B. Stout, “Scattering efficiencies of aggregates of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “Individual and aggregate scattering matrices and cross-sections: conservation laws and reciprocity,” J. Mod. Opt. 48, 2105–2128 (2001).

J. C. Auger, R. G. Barrera, B. Stout, “Scattering efficiencies of aggregates of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).

[CrossRef]

F. Curiel, W. Vargas, R. G. Barrera, “Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra,” Appl. Opt. 41, 5968–5978 (2002).

[CrossRef]

A. Rahmani, C. Benoit, R. Jullien, G. Poussigue, A. Sakout, “Light scattering in fractals with scalar and bond-bending models,” J. Phys.: Condens. Matter 9, 2149–2164 (1997).

D. Bhanti, S. Manickavasagam, M. P. Mengüç, “Identification of non-homogeneous spherical particles from their scattering matrix elements,” J. Quant. Spectrosc. Radiat. Transf. 56, 591–607 (1996).

[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

R. Botet, P. Rannou, “Optical anisotropy of an ensemble of aligned fractal aggregates,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 569–576 (2003).

[CrossRef]

P. Rannou, C. P. McKay, R. Botet, M. Cabane, “Semi-empirical model of absorption and scattering by isotropic fractal aggregates of sphere,” Planet. Space Sci. 47, 385–396 (1999).

[CrossRef]

R. Botet, P. Rannou, M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8796 (1997).

[CrossRef]

R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).

P. Rannou, C. P. McKay, R. Botet, M. Cabane, “Semi-empirical model of absorption and scattering by isotropic fractal aggregates of sphere,” Planet. Space Sci. 47, 385–396 (1999).

[CrossRef]

R. Botet, P. Rannou, M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8796 (1997).

[CrossRef]

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

A.-K. Hamid, I. R. Ciric, M. Hamid, “Iterative solution of the scattering by a system of multilayered dielectric spheres,” IEEE Trans. Antennas Propag. 41, 172–175 (1992).

F. Curiel, W. Vargas, R. G. Barrera, “Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra,” Appl. Opt. 41, 5968–5978 (2002).

[CrossRef]

P. P. Silvester, R. L. Ferrari, Finite Elements for Electrical Engineers (Cambridge U. Press, 1996).

[CrossRef]

S. Fitzwater, J. W. Hook, “Dependent scattering theory: a new approach to predicting scattering in paints,” J. Coat. Technol. 57, 39–47 (1985).

E. S. Thiele, R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” J. Am. Ceram. Soc. 81, 469–479 (1998).

[CrossRef]

U. Frisch, “Wave propagation in random media,” in Probabilistic Methods in Applied Mathematics, A. T. Barucha-Reid, ed. (Academic, 1968), Vol. 1, pp. 75–191.

A.-K. Hamid, I. R. Ciric, M. Hamid, “Iterative solution of the scattering by a system of multilayered dielectric spheres,” IEEE Trans. Antennas Propag. 41, 172–175 (1992).

A.-K. Hamid, I. R. Ciric, M. Hamid, “Iterative solution of the scattering by a system of multilayered dielectric spheres,” IEEE Trans. Antennas Propag. 41, 172–175 (1992).

S. Fitzwater, J. W. Hook, “Dependent scattering theory: a new approach to predicting scattering in paints,” J. Coat. Technol. 57, 39–47 (1985).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).

A. Rahmani, C. Benoit, R. Jullien, G. Poussigue, A. Sakout, “Light scattering in fractals with scalar and bond-bending models,” J. Phys.: Condens. Matter 9, 2149–2164 (1997).

L. Tsang, J. Kong, R. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

B. Stout, J. C. Auger, J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “Individual and aggregate scattering matrices and cross-sections: conservation laws and reciprocity,” J. Mod. Opt. 48, 2105–2128 (2001).

P. Yang, K.-N. Liou, “Finite-difference time domain method for light scattering by non spherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 173–221.

[CrossRef]

D. Bhanti, S. Manickavasagam, M. P. Mengüç, “Identification of non-homogeneous spherical particles from their scattering matrix elements,” J. Quant. Spectrosc. Radiat. Transf. 56, 591–607 (1996).

[CrossRef]

P. Rannou, C. P. McKay, R. Botet, M. Cabane, “Semi-empirical model of absorption and scattering by isotropic fractal aggregates of sphere,” Planet. Space Sci. 47, 385–396 (1999).

[CrossRef]

M. A. Morgan, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979).

[CrossRef]

D. Bhanti, S. Manickavasagam, M. P. Mengüç, “Identification of non-homogeneous spherical particles from their scattering matrix elements,” J. Quant. Spectrosc. Radiat. Transf. 56, 591–607 (1996).

[CrossRef]

M. A. Morgan, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979).

[CrossRef]

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

A. Rahmani, C. Benoit, R. Jullien, G. Poussigue, A. Sakout, “Light scattering in fractals with scalar and bond-bending models,” J. Phys.: Condens. Matter 9, 2149–2164 (1997).

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

M. Quinten, J. Stier, “Absorption of scattered light in colloidal systems of aggregated particles,” Colloid Polym. Sci. 273, 233–241 (1995).

[CrossRef]

A. Rahmani, C. Benoit, R. Jullien, G. Poussigue, A. Sakout, “Light scattering in fractals with scalar and bond-bending models,” J. Phys.: Condens. Matter 9, 2149–2164 (1997).

R. Botet, P. Rannou, “Optical anisotropy of an ensemble of aligned fractal aggregates,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 569–576 (2003).

[CrossRef]

P. Rannou, C. P. McKay, R. Botet, M. Cabane, “Semi-empirical model of absorption and scattering by isotropic fractal aggregates of sphere,” Planet. Space Sci. 47, 385–396 (1999).

[CrossRef]

R. Botet, P. Rannou, M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8796 (1997).

[CrossRef]

Lord Rayleigh, “On the electromagnetic theory of light,” Philos. Mag., 1881, pp. 12–81.

A. Rahmani, C. Benoit, R. Jullien, G. Poussigue, A. Sakout, “Light scattering in fractals with scalar and bond-bending models,” J. Phys.: Condens. Matter 9, 2149–2164 (1997).

L. Tsang, J. Kong, R. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

P. P. Silvester, R. L. Ferrari, Finite Elements for Electrical Engineers (Cambridge U. Press, 1996).

[CrossRef]

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

M. Quinten, J. Stier, “Absorption of scattered light in colloidal systems of aggregated particles,” Colloid Polym. Sci. 273, 233–241 (1995).

[CrossRef]

J. C. Auger, R. G. Barrera, B. Stout, “Scattering efficiencies of aggregates of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).

[CrossRef]

J. C. Auger, B. Stout, “A recursive T-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 533–547 (2003).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “Individual and aggregate scattering matrices and cross-sections: conservation laws and reciprocity,” J. Mod. Opt. 48, 2105–2128 (2001).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

E. S. Thiele, R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” J. Am. Ceram. Soc. 81, 469–479 (1998).

[CrossRef]

L. Tsang, J. Kong, R. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

F. Curiel, W. Vargas, R. G. Barrera, “Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra,” Appl. Opt. 41, 5968–5978 (2002).

[CrossRef]

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).

[CrossRef]

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).

[CrossRef]

P. Yang, K.-N. Liou, “Finite-difference time domain method for light scattering by non spherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 173–221.

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

F. Curiel, W. Vargas, R. G. Barrera, “Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra,” Appl. Opt. 41, 5968–5978 (2002).

[CrossRef]

F. Borghese, P. Denti, “Electromagnetic scattering by a cluster of spheres,” Appl. Opt. 18, 116–120 (1979).

[CrossRef]
[PubMed]

M. I. Mishchenko, “Light scattering by size–shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 4652–4666 (1993).

[CrossRef]
[PubMed]

R. H. Zerull, B. A. S. Gustafson, K. Schultz, E. Thiele-Corbach, “Scattering by aggregates with and without an absorbing mantle: microwave analog experiments,” Appl. Opt. 32, 4088–4100 (1993).

[CrossRef]
[PubMed]

R. Botet, P. Rannou, M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8796 (1997).

[CrossRef]

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

M. Quinten, J. Stier, “Absorption of scattered light in colloidal systems of aggregated particles,” Colloid Polym. Sci. 273, 233–241 (1995).

[CrossRef]

A.-K. Hamid, I. R. Ciric, M. Hamid, “Iterative solution of the scattering by a system of multilayered dielectric spheres,” IEEE Trans. Antennas Propag. 41, 172–175 (1992).

M. A. Morgan, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

E. S. Thiele, R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” J. Am. Ceram. Soc. 81, 469–479 (1998).

[CrossRef]

S. Fitzwater, J. W. Hook, “Dependent scattering theory: a new approach to predicting scattering in paints,” J. Coat. Technol. 57, 39–47 (1985).

B. Stout, J. C. Auger, J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).

[CrossRef]

B. Stout, J. C. Auger, J. Lafait, “Individual and aggregate scattering matrices and cross-sections: conservation laws and reciprocity,” J. Mod. Opt. 48, 2105–2128 (2001).

A. Rahmani, C. Benoit, R. Jullien, G. Poussigue, A. Sakout, “Light scattering in fractals with scalar and bond-bending models,” J. Phys.: Condens. Matter 9, 2149–2164 (1997).

D. Bhanti, S. Manickavasagam, M. P. Mengüç, “Identification of non-homogeneous spherical particles from their scattering matrix elements,” J. Quant. Spectrosc. Radiat. Transf. 56, 591–607 (1996).

[CrossRef]

J. C. Auger, R. G. Barrera, B. Stout, “Scattering efficiencies of aggregates of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).

[CrossRef]

R. Botet, P. Rannou, “Optical anisotropy of an ensemble of aligned fractal aggregates,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 569–576 (2003).

[CrossRef]

J. C. Auger, B. Stout, “A recursive T-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 533–547 (2003).

[CrossRef]

Lord Rayleigh, “On the electromagnetic theory of light,” Philos. Mag., 1881, pp. 12–81.

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).

[CrossRef]

P. Rannou, C. P. McKay, R. Botet, M. Cabane, “Semi-empirical model of absorption and scattering by isotropic fractal aggregates of sphere,” Planet. Space Sci. 47, 385–396 (1999).

[CrossRef]

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).

[CrossRef]

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

L. Tsang, J. Kong, R. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

P. P. Silvester, R. L. Ferrari, Finite Elements for Electrical Engineers (Cambridge U. Press, 1996).

[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

P. Yang, K.-N. Liou, “Finite-difference time domain method for light scattering by non spherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 173–221.

[CrossRef]

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

U. Frisch, “Wave propagation in random media,” in Probabilistic Methods in Applied Mathematics, A. T. Barucha-Reid, ed. (Academic, 1968), Vol. 1, pp. 75–191.