H. Luo, C. Zhou, H. Zou, Y. Lu, “Talbot–SNOM method for non-contact evaluation of high-density gratings,” Opt. Commun. 248, 97–103 (2005).

[Crossref]

S. Wang, C. Zhou, H. Ru, Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434 (2005).

[Crossref]
[PubMed]

P. Wei, H. Chou, Y. Chen, “Subwavelength focusing in the near field in mesoscale air–dielectric structures,” Opt. Lett. 29, 433–435 (2004).

[Crossref]
[PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).

[Crossref]
[PubMed]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

S. Sun, C. T.M. Choi, “A new subgridding scheme for two-dimensional FDTD and FDTD (2,4) methods,” IEEE Trans. Magn. 40, 1041–1044 (2004).

[Crossref]

J. B. Cole, “High-accuracy FDTD solution of the absorbing wave equation, and conducting Maxwell’s equations based on a nonstandard finite-difference model,” IEEE Trans. Antennas Propag. 52, 725–729 (2004).

[Crossref]

E. Miyai, M. Okano, M. Mochizuki, S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).

[Crossref]

J. W. Wallance, M. A. Jensen, “Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method,” J. Opt. Soc. Am. A 19, 610–619 (2002).

[Crossref]

C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38, 284–290 (1999).

[Crossref]

C. Zhou, S. Stankovic, C. Denz, T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[Crossref]

H. Ichikawa, “Analysis of femtosecond-order optical pulses diffracted by periodic structure,” J. Opt. Soc. Am. A 16, 299–304 (1999).

[Crossref]

H. Ichikawa, “Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method,” J. Opt. Soc. Am. A 15, 152–157 (1998).

[Crossref]

C. Zhou, L. Wang, T. Tschudi, “Solutions and analyses of fractional-Talbot array illuminations,” Opt. Commun. 147, 224–228 (1998).

[Crossref]

I. I. Smolyaninov, C. C. Davis, “Apparent superresolution in near-field optical imaging of periodic gratings,” Opt. Lett. 23, 1346–1347 (1998).

[Crossref]

M. V. Berry, S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).

[Crossref]

A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttgart) 79, 41–45 (1988).

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

W. H.F. Talbot, “Facts relating to optical sciences. No. IV,” Philos. Mag. 9, 401–407 (1836).

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

M. V. Berry, S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).

[Crossref]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

S. Sun, C. T.M. Choi, “A new subgridding scheme for two-dimensional FDTD and FDTD (2,4) methods,” IEEE Trans. Magn. 40, 1041–1044 (2004).

[Crossref]

J. B. Cole, “High-accuracy FDTD solution of the absorbing wave equation, and conducting Maxwell’s equations based on a nonstandard finite-difference model,” IEEE Trans. Antennas Propag. 52, 725–729 (2004).

[Crossref]

C. Zhou, W. Wang, E. Dai, L. Liu, “Simple principles of the Talbot effect,” Opt. Photonics News, Dec. 2004, pp. 46–50.

C. Zhou, S. Stankovic, C. Denz, T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[Crossref]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

A. Taflove, S. Hagness, Computational Electromagnetics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).

[Crossref]
[PubMed]

M. V. Berry, S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).

[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).

[Crossref]
[PubMed]

C. Zhou, H. Wang, S. Zhao, P. Xi, L. Liu, “Number of phase levels of a Talbot array illuminator,” Appl. Opt. 40, 607–613 (2001).

[Crossref]

C. Zhou, W. Wang, E. Dai, L. Liu, “Simple principles of the Talbot effect,” Opt. Photonics News, Dec. 2004, pp. 46–50.

H. Luo, C. Zhou, H. Zou, Y. Lu, “Talbot–SNOM method for non-contact evaluation of high-density gratings,” Opt. Commun. 248, 97–103 (2005).

[Crossref]

H. Luo, C. Zhou, H. Zou, Y. Lu, “Talbot–SNOM method for non-contact evaluation of high-density gratings,” Opt. Commun. 248, 97–103 (2005).

[Crossref]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

E. Miyai, M. Okano, M. Mochizuki, S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).

[Crossref]

E. Miyai, M. Okano, M. Mochizuki, S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).

[Crossref]

E. Miyai, M. Okano, M. Mochizuki, S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).

[Crossref]

E. Miyai, M. Okano, M. Mochizuki, S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).

[Crossref]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).

[Crossref]
[PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).

[Crossref]
[PubMed]

C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38, 284–290 (1999).

[Crossref]

C. Zhou, S. Stankovic, C. Denz, T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[Crossref]

S. Sun, C. T.M. Choi, “A new subgridding scheme for two-dimensional FDTD and FDTD (2,4) methods,” IEEE Trans. Magn. 40, 1041–1044 (2004).

[Crossref]

A. Taflove, S. Hagness, Computational Electromagnetics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

W. H.F. Talbot, “Facts relating to optical sciences. No. IV,” Philos. Mag. 9, 401–407 (1836).

C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38, 284–290 (1999).

[Crossref]

C. Zhou, S. Stankovic, C. Denz, T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[Crossref]

C. Zhou, L. Wang, T. Tschudi, “Solutions and analyses of fractional-Talbot array illuminations,” Opt. Commun. 147, 224–228 (1998).

[Crossref]

C. Zhou, L. Wang, T. Tschudi, “Solutions and analyses of fractional-Talbot array illuminations,” Opt. Commun. 147, 224–228 (1998).

[Crossref]

C. Zhou, W. Wang, E. Dai, L. Liu, “Simple principles of the Talbot effect,” Opt. Photonics News, Dec. 2004, pp. 46–50.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

S. Wang, C. Zhou, H. Ru, Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434 (2005).

[Crossref]
[PubMed]

H. Luo, C. Zhou, H. Zou, Y. Lu, “Talbot–SNOM method for non-contact evaluation of high-density gratings,” Opt. Commun. 248, 97–103 (2005).

[Crossref]

C. Zhou, H. Wang, S. Zhao, P. Xi, L. Liu, “Number of phase levels of a Talbot array illuminator,” Appl. Opt. 40, 607–613 (2001).

[Crossref]

C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38, 284–290 (1999).

[Crossref]

C. Zhou, S. Stankovic, C. Denz, T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[Crossref]

C. Zhou, L. Wang, T. Tschudi, “Solutions and analyses of fractional-Talbot array illuminations,” Opt. Commun. 147, 224–228 (1998).

[Crossref]

C. Zhou, W. Wang, E. Dai, L. Liu, “Simple principles of the Talbot effect,” Opt. Photonics News, Dec. 2004, pp. 46–50.

H. Luo, C. Zhou, H. Zou, Y. Lu, “Talbot–SNOM method for non-contact evaluation of high-density gratings,” Opt. Commun. 248, 97–103 (2005).

[Crossref]

A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).

[Crossref]
[PubMed]

C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38, 284–290 (1999).

[Crossref]

C. Zhou, H. Wang, S. Zhao, P. Xi, L. Liu, “Number of phase levels of a Talbot array illuminator,” Appl. Opt. 40, 607–613 (2001).

[Crossref]

H. Dammann, G. Groh, M. Kock, “Restoration of faulty image of periodic objects by means of self-imaging,” Appl. Opt. 10, 1454–1455 (1971).

[Crossref]
[PubMed]

S. Wang, C. Zhou, H. Ru, Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434 (2005).

[Crossref]
[PubMed]

E. Miyai, M. Okano, M. Mochizuki, S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).

[Crossref]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

J. B. Cole, “High-accuracy FDTD solution of the absorbing wave equation, and conducting Maxwell’s equations based on a nonstandard finite-difference model,” IEEE Trans. Antennas Propag. 52, 725–729 (2004).

[Crossref]

S. Sun, C. T.M. Choi, “A new subgridding scheme for two-dimensional FDTD and FDTD (2,4) methods,” IEEE Trans. Magn. 40, 1041–1044 (2004).

[Crossref]

M. V. Berry, S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).

[Crossref]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004).

[Crossref]

J. W. Wallance, M. A. Jensen, “Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method,” J. Opt. Soc. Am. A 19, 610–619 (2002).

[Crossref]

H. Ichikawa, “Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method,” J. Opt. Soc. Am. A 15, 152–157 (1998).

[Crossref]

H. Ichikawa, “Analysis of femtosecond-order optical pulses diffracted by periodic structure,” J. Opt. Soc. Am. A 16, 299–304 (1999).

[Crossref]

J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995).

[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).

[Crossref]
[PubMed]

H. Luo, C. Zhou, H. Zou, Y. Lu, “Talbot–SNOM method for non-contact evaluation of high-density gratings,” Opt. Commun. 248, 97–103 (2005).

[Crossref]

C. Zhou, L. Wang, T. Tschudi, “Solutions and analyses of fractional-Talbot array illuminations,” Opt. Commun. 147, 224–228 (1998).

[Crossref]

C. Zhou, S. Stankovic, C. Denz, T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[Crossref]

J. R. Leger, G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15, 288–290 (1990).

[Crossref]
[PubMed]

S. Nowak, C. Kurtsiefer, T. Pfau, C. David, “High-order Talbot fringes for atomic matter waves,” Opt. Lett. 22, 1430–1432 (1997).

[Crossref]

I. I. Smolyaninov, C. C. Davis, “Apparent superresolution in near-field optical imaging of periodic gratings,” Opt. Lett. 23, 1346–1347 (1998).

[Crossref]

P. Wei, H. Chou, Y. Chen, “Subwavelength focusing in the near field in mesoscale air–dielectric structures,” Opt. Lett. 29, 433–435 (2004).

[Crossref]
[PubMed]

A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttgart) 79, 41–45 (1988).

W. H.F. Talbot, “Facts relating to optical sciences. No. IV,” Philos. Mag. 9, 401–407 (1836).

A. Taflove, S. Hagness, Computational Electromagnetics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

C. Zhou, W. Wang, E. Dai, L. Liu, “Simple principles of the Talbot effect,” Opt. Photonics News, Dec. 2004, pp. 46–50.