Abstract

The cone photoreceptor mosaic of the living human eye has in a limited number of cases been imaged without the use of wavefront-correction techniques. To accomplish this, the directionality of the photoreceptors, as manifested by their waveguiding properties, may be used to advantage. In the present paper we provide a model of our recently proposed directional light scanning laser ophthalmoscope [Opt. Lett. 29, 968 (2004) ] together with a detailed numerical analysis of the device. The outcome is compared with experimental results.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  2. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
    [CrossRef]
  3. E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  4. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [CrossRef] [PubMed]
  5. A. R. Wade, F. W. Fitzke, “ In vivo imaging of the human cone-photoreceptor mosaic using a confocal laser scanning ophthalmoscope,” Lasers Light 8, 129–136 (1998).
  6. A. R. Wade, F. W. Fitzke, “A fast, robust pattern recognition system for low light level image registration and its application to retinal imaging,” Opt. Express 3, 190–197 (1998).
    [CrossRef] [PubMed]
  7. B. Vohnsen, I. Iglesias, P. Artal, “Directional imaging of the retinal cone mosaic,” Opt. Lett. 29, 968–970 (2004).
    [CrossRef] [PubMed]
  8. W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc., London, Ser. B 112, 428–450 (1933).
    [CrossRef]
  9. A. W. Snyder, C. Pask, “The Stiles–Crawford effect-explanation and consequences,” Vision Res. 13, 1115–1137 (1973).
    [CrossRef] [PubMed]
  10. P. J. Delint, T. T. J. M. Berendschot, D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243–248 (1996).
    [CrossRef]
  11. S. A. Burns, S. Wu, F. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
    [CrossRef]
  12. S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997).
    [CrossRef]
  13. J. C. He, S. Marcos, S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16, 2363–2369 (1999).
    [CrossRef]
  14. B. Vohnsen, I. Iglesias, P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318–2328 (2005).
    [CrossRef]
  15. A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
    [CrossRef]
  16. J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
    [CrossRef]
  17. A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Visual Sci. 10, 69–77 (1971).
  18. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
    [CrossRef] [PubMed]
  19. S. A. Burns, S. Marcos, A. E. Elsner, S. Bara, “Contrast improvement of confocal retinal imaging by use of phase-correcting plates,” Opt. Lett. 27, 400–402 (2002).
    [CrossRef]
  20. B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optical wavefront correction,” in Proc. SPIE 4964, 24–32 (2003).
    [CrossRef]
  21. P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  22. S. Marcos, S. A. Burns, J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998).
    [CrossRef]
  23. C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef] [PubMed]
  24. N. P. A. Zagers, T. T. J. M. Berendschot, D. van Norren, “Wavelength dependence of reflectometric cone photoreceptor directionality,” J. Opt. Soc. Am. A 20, 18–23 (2003).
    [CrossRef]
  25. N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
    [CrossRef] [PubMed]
  26. J. J. Vos, A. A. Munnik, J. Boogaard, “Absolute spectral reflectance of fundus oculi,” J. Opt. Soc. Am. 55, 573–574 (1965).
    [CrossRef]
  27. M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (3)

N. P. A. Zagers, T. T. J. M. Berendschot, D. van Norren, “Wavelength dependence of reflectometric cone photoreceptor directionality,” J. Opt. Soc. Am. A 20, 18–23 (2003).
[CrossRef]

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optical wavefront correction,” in Proc. SPIE 4964, 24–32 (2003).
[CrossRef]

2002 (3)

2001 (2)

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

2000 (1)

1999 (2)

J. C. He, S. Marcos, S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16, 2363–2369 (1999).
[CrossRef]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

1998 (2)

1997 (3)

1996 (1)

P. J. Delint, T. T. J. M. Berendschot, D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243–248 (1996).
[CrossRef]

1995 (1)

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

1987 (1)

1973 (1)

A. W. Snyder, C. Pask, “The Stiles–Crawford effect-explanation and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

1971 (1)

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Visual Sci. 10, 69–77 (1971).

1965 (1)

1933 (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc., London, Ser. B 112, 428–450 (1933).
[CrossRef]

Artal, P.

Bara, S.

Berendschot, T. T. J. M.

Boogaard, J.

Burns, S. A.

Campbell, M. C. W.

Crawford, B. H.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc., London, Ser. B 112, 428–450 (1933).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Delint, P. J.

P. J. Delint, T. T. J. M. Berendschot, D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243–248 (1996).
[CrossRef]

Delori, F.

Delori, F. C.

J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
[CrossRef]

R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
[CrossRef] [PubMed]

Donnelly, W. J.

Elsner, A. E.

Enoch, J. M.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Visual Sci. 10, 69–77 (1971).

Fernández, E. J.

Fitzke, F. W.

A. R. Wade, F. W. Fitzke, “A fast, robust pattern recognition system for low light level image registration and its application to retinal imaging,” Opt. Express 3, 190–197 (1998).
[CrossRef] [PubMed]

A. R. Wade, F. W. Fitzke, “ In vivo imaging of the human cone-photoreceptor mosaic using a confocal laser scanning ophthalmoscope,” Lasers Light 8, 129–136 (1998).

Goelz, S.

Gorrand, J.-M.

J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
[CrossRef]

Graham, A.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

He, J. C.

Hebert, T. J.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Hofer, H.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

Hughes, G. W.

Iglesias, I.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Kono, M.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

Lakshminarayanan, V.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

Laties, A. M.

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Visual Sci. 10, 69–77 (1971).

Liang, J.

Marcos, S.

Miller, D. T.

Munnik, A. A.

Pallikaris, A.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

Pask, C.

A. W. Snyder, C. Pask, “The Stiles–Crawford effect-explanation and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

Prieto, P. M.

Queener, H.

Romero-Borja, F.

Roorda, A.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

Shih, P.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder, C. Pask, “The Stiles–Crawford effect-explanation and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

Srinivasan, R.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc., London, Ser. B 112, 428–450 (1933).
[CrossRef]

Strada, E.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

Susilasate, W.

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

van de Kraats, J.

van Norren, D.

Vargas-Martín, F.

Vohnsen, B.

Vos, J. J.

Wade, A. R.

A. R. Wade, F. W. Fitzke, “A fast, robust pattern recognition system for low light level image registration and its application to retinal imaging,” Opt. Express 3, 190–197 (1998).
[CrossRef] [PubMed]

A. R. Wade, F. W. Fitzke, “ In vivo imaging of the human cone-photoreceptor mosaic using a confocal laser scanning ophthalmoscope,” Lasers Light 8, 129–136 (1998).

Webb, R. H.

Williams, D. R.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

Wu, S.

Zagers, N. P. A.

Appl. Opt. (2)

Invest. Ophthalmol. Visual Sci. (2)

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Visual Sci. 10, 69–77 (1971).

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (8)

Nature (London) (1)

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. R. Soc., London, Ser. B (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc., London, Ser. B 112, 428–450 (1933).
[CrossRef]

Proc. SPIE (1)

B. Vohnsen, I. Iglesias, P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optical wavefront correction,” in Proc. SPIE 4964, 24–32 (2003).
[CrossRef]

Vision Res. (3)

A. W. Snyder, C. Pask, “The Stiles–Crawford effect-explanation and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

P. J. Delint, T. T. J. M. Berendschot, D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243–248 (1996).
[CrossRef]

M. Kono, J. M. Enoch, E. Strada, P. Shih, R. Srinivasan, V. Lakshminarayanan, W. Susilasate, A. Graham, “Stiles–Crawford effect of the first kind: assessment of photoreceptor alignments following dark patching,” Vision Res. 41, 103–118 (2001).
[CrossRef] [PubMed]

Other (1)

A. R. Wade, F. W. Fitzke, “ In vivo imaging of the human cone-photoreceptor mosaic using a confocal laser scanning ophthalmoscope,” Lasers Light 8, 129–136 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the model used to describe c-SLO imaging with directional light detection including Gaussian beam radiation from each cone photoreceptor (C), confocal pinhole (P), and detector (D). Also shown is (a) point-spread function calculated from the (b) measured wavefront aberration of an eye shown on a 2 π phase map ( 6.0 mm pupil at a wavelength of 0.785 μ m ). The aberration, although dominated by astigmatism, includes up to 4th-order Zernike polynomials with a total RMS value of 0.67 μ m .

Fig. 2
Fig. 2

Experimental images (correlation of 6–8 consecutive frames) obtained with a 0.785 μ m wavelength laser diode in the right eye at 2 ° nasal with different-sized pinholes: (a) 200, (b) 100, (c) 50, (d) 30 μ m . In (d) a small signal-to-noise ratio hinders high image quality. Ocular motion prevents repeated recording of exactly the same retinal location and images are therefore somewhat shifted with respect to each other.

Fig. 3
Fig. 3

Simulated (a) retinal section for a cone density of 10,000 mm 2 and corresponding c-SLO images for pinholes of (b) 100, (c) 50, (d) 30 μ m . The imaged retina is 6-times magnified in the plane of the pinhole. Corresponding two-dimensional amplitude spectra of (a) and (d) are shown in (e) and (f), respectively, (to enhance contrast of the hexagonal frequency pattern the central part of each spectrum has been suppressed). The wavefront aberration used in the simulation is the experimentally obtained one shown in Fig. 1b.

Fig. 4
Fig. 4

Simulated (a) retinal section for a cone density of 20,000 mm 2 ; otherwise, details are the same as in Fig. 3.

Fig. 5
Fig. 5

Simulated c-SLO images for a cone density of 10,000 mm 2 and a 30 μ m pinhole for different amounts of the wavefront aberration Φ WA shown in Fig. 1b: (a) Φ WA same as in Fig. 3d, (b) Φ WA 2 , (c) Φ WA 4 , (d) no aberrations (corresponding to a completely corrected wavefront).

Fig. 6
Fig. 6

Same as Fig. 3 but with the inclusion of incident beam scanning. For simplicity the spectral images are not shown.

Fig. 7
Fig. 7

Simulated c-SLO images (b), (c), (d) and (f), (g), (h) with 30 μ m pinhole for objects (a) 10,000 mm 2 with w m = 1.50 μ m , (e) 5000 mm 2 with w m = 2.00 μ m , respectively. Images of the objects are shown at wavelengths of (b), (f) 0.785 μ m ; (c), (g) 0.543 μ m , all with the aberration map shown in Fig. 3b; (d), (h) 0.543 μ m without aberrations. Note that (a) and (b) are identical to Fig. 3a and Fig. 3d, respectively, but have been reproduced here for ease of comparison.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F { ψ pupil } = j = 1 N F { A exp [ i Φ WA ( x , y ) x 2 + y 2 w p 2 ] } δ ( r r j ) ,
I ( r ) = F { ψ pupil } 2 P ( r ) .
T ( u ) = [ 2 w r w m w r 2 + w m 2 ] 2 exp [ 2 u 2 w r 2 + w m 2 ] ,

Metrics