Abstract

In images of the human fundus, the fraction of the total returning light that comes from the choroidal layers behind the retina increases with wavelength [Appl. Opt. 28, 1061 (1989); Vision Res. 36, 2229 (1996) ]. There is also evidence that light originating behind the receptors is not coupled into the receptor waveguides en route to the pupil [S. A. Burns et al., Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), p. a1; Invest. Ophthalmol. Visual Sci. 38, 1657 (1997) ]. These observations imply that the contrast of images of the cone mosaic should be greatly reduced with increasing wavelength. This hypothesis was tested by imaging the light distributions in both the planes of the photoreceptors and the pupil at three wavelengths, 550, 650, and 750nm, with the Rochester adaptive optics ophthalmoscope. Surprisingly, the contrast of the retinal images varied only slightly with wavelength. Furthermore, the ratio of the receptorally guided component to the total reflected light measured in the pupil plane was found to be similar at each wavelength, suggesting that, throughout this wavelength range, the scattered light from the deeper layers in the retina is guided through the receptors on its return path to the pupil.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
    [CrossRef] [PubMed]
  2. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  3. J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
    [CrossRef] [PubMed]
  4. N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
    [CrossRef] [PubMed]
  5. A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
    [CrossRef] [PubMed]
  6. A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).
  7. S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993).
    [CrossRef]
  8. K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
    [CrossRef] [PubMed]
  9. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in-vivo ,” Vision Res. 26, 495–500 (1986).
    [CrossRef]
  10. S. A. Burns, S. Wu, F. C. Delori, A. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
    [CrossRef]
  11. P. M. Prieto, J. S. McLellan, S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45, 1957–1965 (2005).
    [CrossRef] [PubMed]
  12. S. A. Burns, J. C. He, F. C. Delori, S. Marcos, “Do the cones see light scattered from the deep retinal layers?” in Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), pp. a1–a4.
  13. S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
    [CrossRef]
  14. J. M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
    [CrossRef] [PubMed]
  15. A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors,” Invest. Ophthalmol. 10, 69–77 (1971).
    [PubMed]
  16. A. Roorda, D. R. Williams, “Optical properties of individual human cones,” J. Vision 2, 404–412 (2002).
    [CrossRef]
  17. S. A. Burns, F. C. Delori, J. C. He, “Back-illuminating the cones: Is the light from the RPE guided?” Invest. Ophthalmol. Visual Sci. 38, 57, Part 1 (1997).
  18. F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).
  19. G. S. Brindley, W. A. H. Rushton, “The color of monochromatic light when passed into the human retina from behind,” J. Physiol. (London) 147, 204–208 (1959).
  20. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  21. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–642 (2001).
    [CrossRef] [PubMed]
  22. M. Hollins, M. Alpern, “Dark adaptation and visual pigment regeneration in human cones,” J. Gen. Physiol. 62, 430–447 (1973).
    [CrossRef] [PubMed]
  23. S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variation in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997).
    [CrossRef]
  24. A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
    [CrossRef]
  25. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
    [PubMed]
  26. J. C. Christou, A. Roorda, D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
    [CrossRef]
  27. J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).
  28. S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
    [CrossRef]
  29. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996).
    [CrossRef] [PubMed]
  30. C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef] [PubMed]
  31. J. M. Enoch, F. L. Tobey, Vertebrate Photoreceptor Optics (Springer-Verlag, 1981).
    [CrossRef]
  32. J. M. Enoch, “Visualization of waveguide modes in retinal receptors,” Am. J. Ophthalmol. 51, 1107/235–1118/246 (1961).
  33. S. Marcos, S. A. Burns, J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998).
    [CrossRef]
  34. N. P. A. Zagers, D. van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257–2268 (2004).
    [CrossRef]
  35. J. Carroll, Center for Visual Science, University of Rochester, New York 14627 (personal communication, 2005).
  36. G. Walls, “The vertebrate eye and its adaptive radiation,” Bull. Cranbrook. Inst. Sci. 19, 785 (1942).
  37. R. A. Weale, “The spectral reflectivity of the cat’s tapetum measured in situ ,” J. Physiol. (London) 119, 30–42 (1953).

2005 (1)

P. M. Prieto, J. S. McLellan, S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45, 1957–1965 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

2002 (3)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “Optical properties of individual human cones,” J. Vision 2, 404–412 (2002).
[CrossRef]

2001 (1)

1999 (2)

S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

1998 (1)

1997 (4)

S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variation in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

S. A. Burns, F. C. Delori, J. C. He, “Back-illuminating the cones: Is the light from the RPE guided?” Invest. Ophthalmol. Visual Sci. 38, 57, Part 1 (1997).

F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).

1996 (3)

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

1995 (2)

S. A. Burns, S. Wu, F. C. Delori, A. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

J. M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

1994 (1)

K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
[CrossRef] [PubMed]

1993 (3)

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993).
[CrossRef]

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

1989 (1)

1986 (2)

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in-vivo ,” Vision Res. 26, 495–500 (1986).
[CrossRef]

1973 (1)

M. Hollins, M. Alpern, “Dark adaptation and visual pigment regeneration in human cones,” J. Gen. Physiol. 62, 430–447 (1973).
[CrossRef] [PubMed]

1971 (1)

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors,” Invest. Ophthalmol. 10, 69–77 (1971).
[PubMed]

1961 (1)

J. M. Enoch, “Visualization of waveguide modes in retinal receptors,” Am. J. Ophthalmol. 51, 1107/235–1118/246 (1961).

1959 (1)

G. S. Brindley, W. A. H. Rushton, “The color of monochromatic light when passed into the human retina from behind,” J. Physiol. (London) 147, 204–208 (1959).

1953 (1)

R. A. Weale, “The spectral reflectivity of the cat’s tapetum measured in situ ,” J. Physiol. (London) 119, 30–42 (1953).

1942 (1)

G. Walls, “The vertebrate eye and its adaptive radiation,” Bull. Cranbrook. Inst. Sci. 19, 785 (1942).

Ageorges, N.

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Alpern, M.

M. Hollins, M. Alpern, “Dark adaptation and visual pigment regeneration in human cones,” J. Gen. Physiol. 62, 430–447 (1973).
[CrossRef] [PubMed]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

Berendschot, T. T. J. M.

Bonaccini, D.

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Brindley, G. S.

G. S. Brindley, W. A. H. Rushton, “The color of monochromatic light when passed into the human retina from behind,” J. Physiol. (London) 147, 204–208 (1959).

Burns, S. A.

P. M. Prieto, J. S. McLellan, S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45, 1957–1965 (2005).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

S. Marcos, S. A. Burns, J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998).
[CrossRef]

S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variation in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997).
[CrossRef]

S. A. Burns, F. C. Delori, J. C. He, “Back-illuminating the cones: Is the light from the RPE guided?” Invest. Ophthalmol. Visual Sci. 38, 57, Part 1 (1997).

F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

S. A. Burns, S. Wu, F. C. Delori, A. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

S. A. Burns, J. C. He, F. C. Delori, S. Marcos, “Do the cones see light scattered from the deep retinal layers?” in Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), pp. a1–a4.

Buzney, S. M.

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

Carroll, J.

J. Carroll, Center for Visual Science, University of Rochester, New York 14627 (personal communication, 2005).

Chen, L.

Christou, J. C.

J. C. Christou, A. Roorda, D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
[CrossRef]

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Delori, F. C.

S. A. Burns, F. C. Delori, J. C. He, “Back-illuminating the cones: Is the light from the RPE guided?” Invest. Ophthalmol. Visual Sci. 38, 57, Part 1 (1997).

F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

S. A. Burns, S. Wu, F. C. Delori, A. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

J. M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

S. A. Burns, J. C. He, F. C. Delori, S. Marcos, “Do the cones see light scattered from the deep retinal layers?” in Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), pp. a1–a4.

Elsner, A.

Elsner, A. E.

S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variation in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997).
[CrossRef]

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
[CrossRef] [PubMed]

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993).
[CrossRef]

Enoch, J. M.

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors,” Invest. Ophthalmol. 10, 69–77 (1971).
[PubMed]

J. M. Enoch, “Visualization of waveguide modes in retinal receptors,” Am. J. Ophthalmol. 51, 1107/235–1118/246 (1961).

J. M. Enoch, F. L. Tobey, Vertebrate Photoreceptor Optics (Springer-Verlag, 1981).
[CrossRef]

Goger, D. G.

F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).

Gorrand, J. M.

J. M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

Hammond, B. R.

F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).

He, J. C.

S. Marcos, S. A. Burns, J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998).
[CrossRef]

S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variation in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997).
[CrossRef]

S. A. Burns, F. C. Delori, J. C. He, “Back-illuminating the cones: Is the light from the RPE guided?” Invest. Ophthalmol. Visual Sci. 38, 57, Part 1 (1997).

S. A. Burns, J. C. He, F. C. Delori, S. Marcos, “Do the cones see light scattered from the deep retinal layers?” in Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), pp. a1–a4.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Hofer, H.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–642 (2001).
[CrossRef] [PubMed]

Hollins, M.

M. Hollins, M. Alpern, “Dark adaptation and visual pigment regeneration in human cones,” J. Gen. Physiol. 62, 430–447 (1973).
[CrossRef] [PubMed]

Jefferies, S. M.

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Laties, A. M.

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors,” Invest. Ophthalmol. 10, 69–77 (1971).
[PubMed]

Liang, J.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Marchis, F.

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Marcos, S.

S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

S. Marcos, S. A. Burns, J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998).
[CrossRef]

S. A. Burns, J. C. He, F. C. Delori, S. Marcos, “Do the cones see light scattered from the deep retinal layers?” in Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), pp. a1–a4.

McLellan, J. S.

P. M. Prieto, J. S. McLellan, S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45, 1957–1965 (2005).
[CrossRef] [PubMed]

Miller, D. T.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Pallikaris, A.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

Pflibsen, K. P.

Prieto, P. M.

P. M. Prieto, J. S. McLellan, S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45, 1957–1965 (2005).
[CrossRef] [PubMed]

Roorda, A.

J. C. Christou, A. Roorda, D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
[CrossRef]

A. Roorda, D. R. Williams, “Optical properties of individual human cones,” J. Vision 2, 404–412 (2002).
[CrossRef]

Rushton, W. A. H.

G. S. Brindley, W. A. H. Rushton, “The color of monochromatic light when passed into the human retina from behind,” J. Physiol. (London) 147, 204–208 (1959).

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

Singer, B.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Snodderly, D. M.

F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).

Staurenghi, G.

K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
[CrossRef] [PubMed]

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993).
[CrossRef]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

Tiemeijer, L. F.

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

Tobey, F. L.

J. M. Enoch, F. L. Tobey, Vertebrate Photoreceptor Optics (Springer-Verlag, 1981).
[CrossRef]

van Blokland, G. J.

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in-vivo ,” Vision Res. 26, 495–500 (1986).
[CrossRef]

van de Kraats, J.

van Norren, D.

Wald, K. J.

K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
[CrossRef] [PubMed]

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993).
[CrossRef]

Walls, G.

G. Walls, “The vertebrate eye and its adaptive radiation,” Bull. Cranbrook. Inst. Sci. 19, 785 (1942).

Weale, R. A.

R. A. Weale, “The spectral reflectivity of the cat’s tapetum measured in situ ,” J. Physiol. (London) 119, 30–42 (1953).

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
[CrossRef] [PubMed]

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

Williams, D. R.

J. C. Christou, A. Roorda, D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
[CrossRef]

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

A. Roorda, D. R. Williams, “Optical properties of individual human cones,” J. Vision 2, 404–412 (2002).
[CrossRef]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–642 (2001).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Wolf, S.

K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
[CrossRef] [PubMed]

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993).
[CrossRef]

Wu, S.

Yamauchi, Y.

Yoon, G. Y.

Zagers, N. P. A.

Am. J. Ophthalmol. (1)

J. M. Enoch, “Visualization of waveguide modes in retinal receptors,” Am. J. Ophthalmol. 51, 1107/235–1118/246 (1961).

Appl. Opt. (2)

Astrophys. J. (1)

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

Bull. Cranbrook. Inst. Sci. (1)

G. Walls, “The vertebrate eye and its adaptive radiation,” Bull. Cranbrook. Inst. Sci. 19, 785 (1942).

ESO Messenger (1)

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Int. Ophthalmol. Clin. (1)

K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994).
[CrossRef] [PubMed]

Invest. Ophthalmol. (1)

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors,” Invest. Ophthalmol. 10, 69–77 (1971).
[PubMed]

Invest. Ophthalmol. Visual Sci. (4)

A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).

S. A. Burns, F. C. Delori, J. C. He, “Back-illuminating the cones: Is the light from the RPE guided?” Invest. Ophthalmol. Visual Sci. 38, 57, Part 1 (1997).

F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

M. Hollins, M. Alpern, “Dark adaptation and visual pigment regeneration in human cones,” J. Gen. Physiol. 62, 430–447 (1973).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (2)

R. A. Weale, “The spectral reflectivity of the cat’s tapetum measured in situ ,” J. Physiol. (London) 119, 30–42 (1953).

G. S. Brindley, W. A. H. Rushton, “The color of monochromatic light when passed into the human retina from behind,” J. Physiol. (London) 147, 204–208 (1959).

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

J. Vision (1)

A. Roorda, D. R. Williams, “Optical properties of individual human cones,” J. Vision 2, 404–412 (2002).
[CrossRef]

Opt. Express (1)

Retina (1)

S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993).
[CrossRef]

Vision Res. (7)

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in-vivo ,” Vision Res. 26, 495–500 (1986).
[CrossRef]

J. M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

P. M. Prieto, J. S. McLellan, S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45, 1957–1965 (2005).
[CrossRef] [PubMed]

Other (3)

S. A. Burns, J. C. He, F. C. Delori, S. Marcos, “Do the cones see light scattered from the deep retinal layers?” in Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), pp. a1–a4.

J. M. Enoch, F. L. Tobey, Vertebrate Photoreceptor Optics (Springer-Verlag, 1981).
[CrossRef]

J. Carroll, Center for Visual Science, University of Rochester, New York 14627 (personal communication, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic cross sections of the diffuse and guided components for the pupil and retinal planes. A, Pupil plane. The guided component (light gray) has a Gaussian profile that is most often centered in the pupil aperture, and the guided component sits above the diffuse pedestal (dark gray). B, Analogous cross section in the retinal image space. The peaks correspond to the waveguided light in the cones and have a Gaussian-like distribution. The floor of the guided component was found through bilinear interpolation. The waveguided contribution lies above the diffuse light scattered from the anterior and posterior layers to the photoreceptor plane.

Fig. 2
Fig. 2

Guided and diffuse components measured in the pupil plane at the three wavelengths for subject EM. The total quantum flux measured by the pupil conjugate CCD camera was equalized across wavelength. All three subjects showed the same trend of results: The amplitude and the ρ value of the guided component decrease with increasing wavelength; therefore, the overall volume of the guided fraction stays similar across wavelength. The guided fraction was fitted with a Gaussian function (solid curve) given by Eq. (1).

Fig. 3
Fig. 3

A, Variation of retinal reflectance plotted as a function of wavelength for the pupil plane images. The results for all three subjects, JT, EM, and DG, are shown. Solid curves represent the total retinal reflectance, whereas dashed and dotted curves represent the guided and diffuse components of the total reflectance, respectively. B, Analogous plots of retinal reflectance plotted as a function of wavelength for the retinal images. The total reflectance values measured in both the retinal and the pupil planes agree strongly; however, the guided component is larger at the pupil plane.

Fig. 4
Fig. 4

A, Guided fraction, C p , from the pupil images (i.e., irradiance from the guided component divided by the total irradiance) as a function of wavelength (solid curve). B, Analogous plot for the guided fraction, C r , from the retinal images. For both figures the solid curves are the means of three subjects, the error bars representing one standard deviation. The dashed curves represent the prediction from the retinal reflectance model of van de Kraats et al.[3] with the added assumption that no light reflected from layers behind the retina is coupled back into receptors. For both the retinal and the pupil plane images, the guided fraction of the total reflectance stayed essentially constant across wavelength in contrast to the predictions.

Fig. 5
Fig. 5

Retinal plane images for subject DG at an eccentricity of 1 deg in the temporal retina. The top row shows the registered raw images for the three imaging wavelengths 550, 650, and 750 nm . The bottom row shows the same images but deconvolved using the system PSF. The scale bar corresponds to 10 μ m .

Tables (2)

Tables Icon

Table 1 Summary of Pupil Plane Results for Subjects JT, EM, and DG a

Tables Icon

Table 2 Summary of Retinal Plane Results for Subjects JT, EM, and DG a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L PUPIL ( r ) = B + A × 10 ρ r 2 ,
C p = G p G p + D p .
C r = G r G r + D r .
R L = R M d 2 d 2 + 4 f 2 ,

Metrics