Abstract

We explored effects of measurement conditions on wave aberration estimates for uncorrected, axially myopic model eyes. Wave aberrations were initially referenced to either the anterior corneal pole or the natural entrance pupil of symmetrical eye models, with rays traced into the eye from infinity (into the eye) to simulate normal vision, into the eye from infinity and then back out of the eye from the retinal intercepts (into/out of the eye), or out of the eye from the retinal fovea (out of the eye). The into-the-eye and out-of-the-eye ray traces gave increases in spherical aberration as myopia increased, but the into/out-of-the-eye ray trace showed little variation in spherical aberration. Reference plane choice also affected spherical aberration. Corresponding residual aberrations were calculated after the models had been optically corrected, either by placing the object or image plane at the paraxial far point or by modifying corneas to simulate laser ablation corrections. Correcting aberrations by ablation was more complete if the original aberrations were referenced to the cornea rather than to the entrance pupil. For eyes corrected by spectacle lenses, failure to allow for effects of pupil magnification on apparent entrance pupil diameter produced larger changes in measured aberrations. The general findings regarding choice of reference plane and direction of measurement were found to be equally applicable to eyes that lacked rotational symmetry.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. MacRae, R. R. Krueger, R. A. Applegate, Customized Corneal Ablation: The Quest for Super Vision (Slack, 2001).
  2. R. R. Krueger, R. A. Applegate, S. M. MacRae, Wavefront Customized Visual Corrections: The Quest for Super Vision II (Slack, 2004).
  3. G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
    [CrossRef]
  4. W. N. Charman, N. Chateau, “The prospects for super-acuity: limits to visual performance after correction of monochromatic aberration,” Ophthalmic Physiol. Opt. 23, 479–493 (2003).
    [CrossRef] [PubMed]
  5. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  6. C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg. 18, S589–S592 (2002).
    [PubMed]
  7. F. Manns, A. Ho, J.-M. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia in primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002).
    [CrossRef]
  8. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefits of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
    [CrossRef]
  9. J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
    [CrossRef]
  10. N. López-Gil, N. Chateau, J. Castejón-Monchón, A. Benito, “Correcting ocular aberrations by soft contact lenses,” S. Afr. Optom. 62, 173–177 (2003).
  11. H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1951).
  12. W. N. Charman, “Optical aberrations of the eye, Part I,” Optician, April 25, 2004, pp. 18–22.
  13. W. N. Charman, “Optical aberrations of the eye, Part II,” Optician, June 20, 2004, pp. 24–29.
  14. D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87, 138–148 (2004).
    [CrossRef] [PubMed]
  15. American National Standards Institute, “American National Standard for Ophthalmics—Methods for reporting optical aberrations of eyes,” ANSI Z80. 28-2004.
  16. D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5–27 (2005).
    [CrossRef] [PubMed]
  17. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
    [CrossRef]
  18. E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
    [CrossRef]
  19. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer, and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 540–547 (2001).
    [CrossRef]
  20. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  21. J. Liang, D. R. Williams, “Aberrations and retinal image quality in the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  22. X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
    [CrossRef]
  23. T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
    [CrossRef]
  24. S. Marcos, L. Diaz-Santana, L. Llorente, C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?,” J. Opt. Soc. Am. A 19, 1063–1072 (2002).
    [CrossRef]
  25. X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
    [CrossRef]
  26. P. Rodriguez, R. Navarro, L. Gonzalez, J. L. Hernandez, “Accuracy and reproducibility of Zywave, Tracey and experimental aberrometers,” J. Refract. Surg. 20, 810–817 (2004).
  27. L. Diaz-Santana, J. C. Dainty, “Effects of retinal scattering in the ocular double-pass process,” J. Opt. Soc. Am. A 18, 1437–1444.(2001)
    [CrossRef]
  28. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  29. L. N. Thibos, A. Bradley, X. Hong, “Model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 1793–1803 (2002).
    [CrossRef]
  30. L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  31. J. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
    [CrossRef]
  32. R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [CrossRef] [PubMed]
  33. J. Schwiegerling, R. W. Snyder, S. M. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. M. MacRae, R. R. Krueger, and R. A. Applegate, eds. (Slack, 2001) pp. 95–107.
  34. W. N. Charman, D. A. Atchison, “The effect of changes in entrance pupil magnification on wavefront guided correction of refractive error and higher order aberration,” J. Refract. Surg. 21, 386–391 (2005).
    [PubMed]
  35. A. Maréchal, “Etude des effets combines sur la diffraction et des aberrations géometriques sur l’image d’un point lumineux,” Rev. Opt., Theor. Instrum. 26, 257–277 (1947).
  36. L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
    [CrossRef]
  37. A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
    [CrossRef] [PubMed]
  38. M. C. Campbell, J. M. Bueno, J. J. Hunter, M. L. Kisilak, “Ophthalmic lens effects in Hartmann–Shack measurements,” J. Vision 3, 29a (2003), http://journalofvision.org/3/12/29/doi:10.1167/3.12.29.
    [CrossRef]

2005

D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5–27 (2005).
[CrossRef] [PubMed]

W. N. Charman, D. A. Atchison, “The effect of changes in entrance pupil magnification on wavefront guided correction of refractive error and higher order aberration,” J. Refract. Surg. 21, 386–391 (2005).
[PubMed]

2004

P. Rodriguez, R. Navarro, L. Gonzalez, J. L. Hernandez, “Accuracy and reproducibility of Zywave, Tracey and experimental aberrometers,” J. Refract. Surg. 20, 810–817 (2004).

D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87, 138–148 (2004).
[CrossRef] [PubMed]

2003

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

W. N. Charman, N. Chateau, “The prospects for super-acuity: limits to visual performance after correction of monochromatic aberration,” Ophthalmic Physiol. Opt. 23, 479–493 (2003).
[CrossRef] [PubMed]

X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
[CrossRef]

M. C. Campbell, J. M. Bueno, J. J. Hunter, M. L. Kisilak, “Ophthalmic lens effects in Hartmann–Shack measurements,” J. Vision 3, 29a (2003), http://journalofvision.org/3/12/29/doi:10.1167/3.12.29.
[CrossRef]

2002

A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, X. Hong, “Model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 1793–1803 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef]

C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg. 18, S589–S592 (2002).
[PubMed]

F. Manns, A. Ho, J.-M. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia in primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002).
[CrossRef]

G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[CrossRef]

S. Marcos, L. Diaz-Santana, L. Llorente, C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?,” J. Opt. Soc. Am. A 19, 1063–1072 (2002).
[CrossRef]

2001

2000

1998

1997

J. Liang, D. R. Williams, “Aberrations and retinal image quality in the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

1994

1985

1947

A. Maréchal, “Etude des effets combines sur la diffraction et des aberrations géometriques sur l’image d’un point lumineux,” Rev. Opt., Theor. Instrum. 26, 257–277 (1947).

Applegate, R. A.

X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
[CrossRef]

S. M. MacRae, R. R. Krueger, R. A. Applegate, Customized Corneal Ablation: The Quest for Super Vision (Slack, 2001).

R. R. Krueger, R. A. Applegate, S. M. MacRae, Wavefront Customized Visual Corrections: The Quest for Super Vision II (Slack, 2004).

Aragon, J. L.

Artal, P.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

Atchison, D. A.

D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5–27 (2005).
[CrossRef] [PubMed]

W. N. Charman, D. A. Atchison, “The effect of changes in entrance pupil magnification on wavefront guided correction of refractive error and higher order aberration,” J. Refract. Surg. 21, 386–391 (2005).
[PubMed]

D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87, 138–148 (2004).
[CrossRef] [PubMed]

Benito, A.

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef]

N. López-Gil, N. Chateau, J. Castejón-Monchón, A. Benito, “Correcting ocular aberrations by soft contact lenses,” S. Afr. Optom. 62, 173–177 (2003).

Bescós, J.

Bille, J.

Bradley, A.

X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
[CrossRef]

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, X. Hong, “Model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 1793–1803 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Bueno, J. M.

M. C. Campbell, J. M. Bueno, J. J. Hunter, M. L. Kisilak, “Ophthalmic lens effects in Hartmann–Shack measurements,” J. Vision 3, 29a (2003), http://journalofvision.org/3/12/29/doi:10.1167/3.12.29.
[CrossRef]

Burns, S. A.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer, and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 540–547 (2001).
[CrossRef]

Campbell, M. C.

M. C. Campbell, J. M. Bueno, J. J. Hunter, M. L. Kisilak, “Ophthalmic lens effects in Hartmann–Shack measurements,” J. Vision 3, 29a (2003), http://journalofvision.org/3/12/29/doi:10.1167/3.12.29.
[CrossRef]

Carkeet, A.

A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
[CrossRef] [PubMed]

Castejón-Mochón, J. F.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef]

Castejón-Monchón, J.

N. López-Gil, N. Chateau, J. Castejón-Monchón, A. Benito, “Correcting ocular aberrations by soft contact lenses,” S. Afr. Optom. 62, 173–177 (2003).

Charman, W. N.

W. N. Charman, D. A. Atchison, “The effect of changes in entrance pupil magnification on wavefront guided correction of refractive error and higher order aberration,” J. Refract. Surg. 21, 386–391 (2005).
[PubMed]

W. N. Charman, N. Chateau, “The prospects for super-acuity: limits to visual performance after correction of monochromatic aberration,” Ophthalmic Physiol. Opt. 23, 479–493 (2003).
[CrossRef] [PubMed]

W. N. Charman, “Optical aberrations of the eye, Part I,” Optician, April 25, 2004, pp. 18–22.

W. N. Charman, “Optical aberrations of the eye, Part II,” Optician, June 20, 2004, pp. 24–29.

Chateau, N.

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

W. N. Charman, N. Chateau, “The prospects for super-acuity: limits to visual performance after correction of monochromatic aberration,” Ophthalmic Physiol. Opt. 23, 479–493 (2003).
[CrossRef] [PubMed]

N. López-Gil, N. Chateau, J. Castejón-Monchón, A. Benito, “Correcting ocular aberrations by soft contact lenses,” S. Afr. Optom. 62, 173–177 (2003).

Cheng, X.

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Cox, I. G.

Culbertson, W.

F. Manns, A. Ho, J.-M. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia in primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002).
[CrossRef]

Dainty, C.

Dainty, J. C.

De Brabander, J.

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

Diaz-Santana, L.

Goelz, S.

Gonzalez, L.

P. Rodriguez, R. Navarro, L. Gonzalez, J. L. Hernandez, “Accuracy and reproducibility of Zywave, Tracey and experimental aberrometers,” J. Refract. Surg. 20, 810–817 (2004).

Grimm, B.

Guirao, A.

Hernandez, J. L.

P. Rodriguez, R. Navarro, L. Gonzalez, J. L. Hernandez, “Accuracy and reproducibility of Zywave, Tracey and experimental aberrometers,” J. Refract. Surg. 20, 810–817 (2004).

Ho, A.

F. Manns, A. Ho, J.-M. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia in primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002).
[CrossRef]

Hofer, H.

Hong, X.

X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
[CrossRef]

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, X. Hong, “Model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 1793–1803 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Hopkins, H. H.

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1951).

Hunter, J. J.

M. C. Campbell, J. M. Bueno, J. J. Hunter, M. L. Kisilak, “Ophthalmic lens effects in Hartmann–Shack measurements,” J. Vision 3, 29a (2003), http://journalofvision.org/3/12/29/doi:10.1167/3.12.29.
[CrossRef]

Kisilak, M. L.

M. C. Campbell, J. M. Bueno, J. J. Hunter, M. L. Kisilak, “Ophthalmic lens effects in Hartmann–Shack measurements,” J. Vision 3, 29a (2003), http://journalofvision.org/3/12/29/doi:10.1167/3.12.29.
[CrossRef]

Krueger, R. R.

R. R. Krueger, R. A. Applegate, S. M. MacRae, Wavefront Customized Visual Corrections: The Quest for Super Vision II (Slack, 2004).

S. M. MacRae, R. R. Krueger, R. A. Applegate, Customized Corneal Ablation: The Quest for Super Vision (Slack, 2001).

Liang, J.

Llorente, L.

Lopez-Gil, N.

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

López-Gil, N.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef]

N. López-Gil, N. Chateau, J. Castejón-Monchón, A. Benito, “Correcting ocular aberrations by soft contact lenses,” S. Afr. Optom. 62, 173–177 (2003).

Losada, M. A.

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

Luo, H. D.

A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
[CrossRef] [PubMed]

MacRae, S. M.

J. Schwiegerling, R. W. Snyder, S. M. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. M. MacRae, R. R. Krueger, and R. A. Applegate, eds. (Slack, 2001) pp. 95–107.

S. M. MacRae, R. R. Krueger, R. A. Applegate, Customized Corneal Ablation: The Quest for Super Vision (Slack, 2001).

R. R. Krueger, R. A. Applegate, S. M. MacRae, Wavefront Customized Visual Corrections: The Quest for Super Vision II (Slack, 2004).

Manns, F.

F. Manns, A. Ho, J.-M. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia in primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002).
[CrossRef]

Marcos, S.

S. Marcos, L. Diaz-Santana, L. Llorente, C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?,” J. Opt. Soc. Am. A 19, 1063–1072 (2002).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer, and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 540–547 (2001).
[CrossRef]

Maréchal, A.

A. Maréchal, “Etude des effets combines sur la diffraction et des aberrations géometriques sur l’image d’un point lumineux,” Rev. Opt., Theor. Instrum. 26, 257–277 (1947).

Marin, G.

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

Moreno-Barriuso, E.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer, and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 540–547 (2001).
[CrossRef]

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

Navarro, R.

P. Rodriguez, R. Navarro, L. Gonzalez, J. L. Hernandez, “Accuracy and reproducibility of Zywave, Tracey and experimental aberrometers,” J. Refract. Surg. 20, 810–817 (2004).

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer, and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 540–547 (2001).
[CrossRef]

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

Parel, J.-M.

F. Manns, A. Ho, J.-M. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia in primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002).
[CrossRef]

Porter, J.

Roberts, C.

C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg. 18, S589–S592 (2002).
[PubMed]

Rodriguez, P.

P. Rodriguez, R. Navarro, L. Gonzalez, J. L. Hernandez, “Accuracy and reproducibility of Zywave, Tracey and experimental aberrometers,” J. Refract. Surg. 20, 810–817 (2004).

Salmon, T. O.

Santamaría, J.

Saw, S. M.

A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
[CrossRef] [PubMed]

Schwiegerling, J.

J. Schwiegerling, R. W. Snyder, S. M. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. M. MacRae, R. R. Krueger, and R. A. Applegate, eds. (Slack, 2001) pp. 95–107.

Singer, B.

Snyder, R. W.

J. Schwiegerling, R. W. Snyder, S. M. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. M. MacRae, R. R. Krueger, and R. A. Applegate, eds. (Slack, 2001) pp. 95–107.

Tan, D. T.

A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
[CrossRef] [PubMed]

Thibos, L. N.

X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
[CrossRef]

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, X. Hong, “Model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 1793–1803 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Tong, L.

A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
[CrossRef] [PubMed]

Van der Worp, E.

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

Williams, D. R.

Woods, R.

X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
[CrossRef]

Ye, M.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Yoon, G.-Y.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Clin. Exp. Optom.

D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5–27 (2005).
[CrossRef] [PubMed]

D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87, 138–148 (2004).
[CrossRef] [PubMed]

J. Cataract Refractive Surg.

F. Manns, A. Ho, J.-M. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia in primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002).
[CrossRef]

J. Opt. Soc. Am. A

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality in the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefits of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

L. Diaz-Santana, J. C. Dainty, “Effects of retinal scattering in the ocular double-pass process,” J. Opt. Soc. Am. A 18, 1437–1444.(2001)
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[CrossRef]

S. Marcos, L. Diaz-Santana, L. Llorente, C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?,” J. Opt. Soc. Am. A 19, 1063–1072 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

J. Refract. Surg.

W. N. Charman, D. A. Atchison, “The effect of changes in entrance pupil magnification on wavefront guided correction of refractive error and higher order aberration,” J. Refract. Surg. 21, 386–391 (2005).
[PubMed]

P. Rodriguez, R. Navarro, L. Gonzalez, J. L. Hernandez, “Accuracy and reproducibility of Zywave, Tracey and experimental aberrometers,” J. Refract. Surg. 20, 810–817 (2004).

C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg. 18, S589–S592 (2002).
[PubMed]

J. Vision

M. C. Campbell, J. M. Bueno, J. J. Hunter, M. L. Kisilak, “Ophthalmic lens effects in Hartmann–Shack measurements,” J. Vision 3, 29a (2003), http://journalofvision.org/3/12/29/doi:10.1167/3.12.29.
[CrossRef]

Ophthalmic Physiol. Opt.

L. N. Thibos, A. Bradley, X. Hong, “Model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 1793–1803 (2002).
[CrossRef]

W. N. Charman, N. Chateau, “The prospects for super-acuity: limits to visual performance after correction of monochromatic aberration,” Ophthalmic Physiol. Opt. 23, 479–493 (2003).
[CrossRef] [PubMed]

Optom. Vision Sci.

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer, and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 540–547 (2001).
[CrossRef]

X. Hong, L. N. Thibos, A. Bradley, R. Woods, R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 15–25 (2003).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

J. De Brabander, N. Chateau, G. Marin, N. Lopez-Gil, E. Van der Worp, A. Benito, “Simulated optical performance of custom wavefront soft contact lenses for keratoconus,” Optom. Vision Sci. 80, 637–643 (2003).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Rev. Opt., Theor. Instrum.

A. Maréchal, “Etude des effets combines sur la diffraction et des aberrations géometriques sur l’image d’un point lumineux,” Rev. Opt., Theor. Instrum. 26, 257–277 (1947).

Vision Res.

A. Carkeet, H. D. Luo, L. Tong, S. M. Saw, D. T. Tan, “Refractive error and monochromatic aberrations in Singaporean children,” Vision Res. 42, 1809–1824 (2002).
[CrossRef] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef]

Other

J. Schwiegerling, R. W. Snyder, S. M. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. M. MacRae, R. R. Krueger, and R. A. Applegate, eds. (Slack, 2001) pp. 95–107.

N. López-Gil, N. Chateau, J. Castejón-Monchón, A. Benito, “Correcting ocular aberrations by soft contact lenses,” S. Afr. Optom. 62, 173–177 (2003).

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1951).

W. N. Charman, “Optical aberrations of the eye, Part I,” Optician, April 25, 2004, pp. 18–22.

W. N. Charman, “Optical aberrations of the eye, Part II,” Optician, June 20, 2004, pp. 24–29.

S. M. MacRae, R. R. Krueger, R. A. Applegate, Customized Corneal Ablation: The Quest for Super Vision (Slack, 2001).

R. R. Krueger, R. A. Applegate, S. M. MacRae, Wavefront Customized Visual Corrections: The Quest for Super Vision II (Slack, 2004).

American National Standards Institute, “American National Standard for Ophthalmics—Methods for reporting optical aberrations of eyes,” ANSI Z80. 28-2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of marginal ray paths into the eye (solid ray A) and out of the eye (dashed ray B) in a case of high myopia. The rays pass through the same point in the pupil (aperture stop) but have different incident heights and angles at the optical surfaces.

Fig. 2
Fig. 2

Twelve basic (nonablated) models studied. For clarity, optical details of the models have been simplified. The position of the aperture stop is shown in each case. On the left-hand side are the six models in which the aberrations of the uncorrected eye are measured, the path for the marginal ray being shown in each case. Note the marked differences in the paths followed by the rays for the into-the-eye and out-of-the-eye cases. On the right-hand side are the six models corrected with an ideal thin contact lens, so that the conjugate object and image for the eye alone always lie, respectively, either at the far point and on the retina or on the retina and at the far point. Note that in these cases, because of aberration, the peripheral ray into the eye does not intersect the optical axis at the retina ( EI oc , CI oc , EI O oc , and CI O oc ) and the peripheral ray out of the eye is not parallel to the optical axis ( EO oc and CO oc ). For the sake of clarity, the aberration is exaggerated in these figures. The ray paths in cases EI oc and EO oc are similar, although the ray directions are opposite. Similarly, the ray paths in cases CI oc and CO oc are similar.

Fig. 3
Fig. 3

Ablation geometry. See text for details.

Fig. 4
Fig. 4

Zernike spherical aberration coefficient c 4 0 for the unablated uncorrected and optically corrected eye models, as a function of their myopia, calculated from ray tracing into the eye (models EI o , EI oc , CI o , and CI oc ). For this and subsequent figures, the aperture diameter is 6 mm .

Fig. 5
Fig. 5

Zernike spherical aberration coefficient c 4 0 for the unablated uncorrected and optically corrected eye models, as a function of their myopia, calculated from ray tracing into/out of the eye (models EI O o , EI O oc , CI O o , and CI O oc ).

Fig. 6
Fig. 6

Zernike spherical aberration coefficient c 4 0 for the unablated uncorrected and optically corrected eye models, as a function of their myopia, calculated from ray tracing out of the eye (models EO o , EO oc , CO o , and CO oc ).

Fig. 7
Fig. 7

Zernike spherical aberration coefficient c 4 0 as a function of the original myopia in ablation-corrected myopic eyes (models EI a , EI O a , EO a , CI a , CI O a , and CO a ).

Fig. 8
Fig. 8

Zernike spherical aberration coefficient c 4 0 for 6 mm exit pupils for the unablated eye model EO oc , as a function of myopia. This is shown when correction is applied by placing the image plane at the far point [exit pupil ( EO oc ) ], correcting with a thin spectacle lens 12 mm in front of the eye for which the image in the spectacle lens (SL) of the eye pupil is 6 mm (exit pupil image in SL), and placing a 6 mm stop at the spectacle lens (exit pupil at SL).

Fig. 9
Fig. 9

Gray-scale maps (across 6 mm ) of differences in higher-order aberrations between corneal-referenced and exit-pupil-referenced out-of-the-eye models with 5° lens tilts. The scale is in micrometers.

Tables (3)

Tables Icon

Table 1 Zernike Aberration Coefficients of 10 D Myopic Model Eyes before Ablation ( μ m )

Tables Icon

Table 2 Anterior Corneal Parameters of 10 D Myopic Model Eyes after Ablation

Tables Icon

Table 3 Zernike Aberration Coefficients and Corrections of 10 D Myopic Model Eyes after Ablation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ t = W ( x max , y max ) ( n 1 ) ,
s + [ W ( x max , y max ) W ( x , y ) ] ( n 1 ) = s + Δ t ,
s = s W ( x , y ) ( n 1 ) .
s = c y c 2 1 + 1 ( 1 + Q ) c 2 y c 2 ,
M = 4 3 c 2 0 ( x max 2 + y max 2 ) ,
M = ( 4 3 c 2 0 + 12 5 c 4 0 + 24 7 c 6 0 ) ( x max 2 + y max 2 ) ,

Metrics