Abstract

We propose a new reflective liquid-crystal diffraction grating design attained by combining the use of a polymer wall to reduce the detrimental effect of the fringing electric field in a high-resolution grating and a quarter-wave plate to make the device polarization independent. This design could offer significant performance advantages in a projection display system. Results of calculations are compared with experimental data.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Devices 26, 1734–1737 (1979).
    [CrossRef]
  2. M. W. Fritsch, H. Wohler, G. Haas, D. A. Mlynski, “A liquid-crystal phase modulator for large-screen projection,” Inf. Disp. 30, 85–90 (1989).
  3. J. Eschler, S. Dickmann, O. Cossalter, D. A. Mlynski, “Polarization independent LC phase modulators and their application,” J. Soc. Inf. Disp. 24, 809–812 (1993).
  4. G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
    [CrossRef] [PubMed]
  5. M. Lu, K. H. Yang, “Reflective nematic LC Devices for LCoS applications,” J. Soc. Inf. Disp. 31, 1–7 (2000).
  6. Y. L. Zhang, P. J. Bos, D. B. Chung, “2-D modeling of the effect of electrode topography and interpixel gap on LCoS devices,” J. Soc. Inf. Disp. 34, 1382–1385 (2003).
  7. B. Wang, D. B. Chung, P. J. Bos, “Finite-difference time-domain optical calculations of polymer-LC composite electrodiffractive device,” Jpn. J. Appl. Phys., Part 1 43, 176–181 (2004).
    [CrossRef]
  8. N. Yamada, S. Kohzaki, F. Funada, K. Awane, “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Digest Tech. Papers 26, 575–578 (1995).
  9. D. J. Broer, J. Lub, C. F. van Nostrum, M. M. Wienk, “Photo-induced diffusion during the formation of liquid-crystalline networks: A powerful tool to control polymer morphology down to the nanoscale level,” Recent Res. Dev. Polym. Sci. 2, 313–324 (1998).
  10. C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
    [CrossRef]
  11. J. E. Anderson, P. E. Watson, P. J. Bos, LC3D Software (Artech House, 2001).
  12. A. Lien, “A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
    [CrossRef]
  13. S. Pancharatnam, “Achromatic combinations of birefrigent plates,” Proc. Indian Acad. Sci., Sect. A 41, 137–144 (1955).
  14. E. Baumann, “The Fischer large screen projection system,” J. SMPTE 60, 344–356 (1953).
    [CrossRef]
  15. W. E. Glenn, “New color projection system,” J. Opt. Soc. Am. 48, 841–843 (1958).
    [CrossRef]
  16. W. E. Glenn, “Principles of simultaneous color projection television using fluid deformation,” J. Adhes. 79, 788–794 (1970).
  17. R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
    [CrossRef]

2004 (1)

B. Wang, D. B. Chung, P. J. Bos, “Finite-difference time-domain optical calculations of polymer-LC composite electrodiffractive device,” Jpn. J. Appl. Phys., Part 1 43, 176–181 (2004).
[CrossRef]

2003 (1)

Y. L. Zhang, P. J. Bos, D. B. Chung, “2-D modeling of the effect of electrode topography and interpixel gap on LCoS devices,” J. Soc. Inf. Disp. 34, 1382–1385 (2003).

2000 (1)

M. Lu, K. H. Yang, “Reflective nematic LC Devices for LCoS applications,” J. Soc. Inf. Disp. 31, 1–7 (2000).

1998 (2)

D. J. Broer, J. Lub, C. F. van Nostrum, M. M. Wienk, “Photo-induced diffusion during the formation of liquid-crystalline networks: A powerful tool to control polymer morphology down to the nanoscale level,” Recent Res. Dev. Polym. Sci. 2, 313–324 (1998).

C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
[CrossRef]

1997 (1)

A. Lien, “A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
[CrossRef]

1995 (1)

N. Yamada, S. Kohzaki, F. Funada, K. Awane, “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Digest Tech. Papers 26, 575–578 (1995).

1993 (2)

J. Eschler, S. Dickmann, O. Cossalter, D. A. Mlynski, “Polarization independent LC phase modulators and their application,” J. Soc. Inf. Disp. 24, 809–812 (1993).

G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
[CrossRef] [PubMed]

1990 (1)

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

1989 (1)

M. W. Fritsch, H. Wohler, G. Haas, D. A. Mlynski, “A liquid-crystal phase modulator for large-screen projection,” Inf. Disp. 30, 85–90 (1989).

1979 (1)

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Devices 26, 1734–1737 (1979).
[CrossRef]

1970 (1)

W. E. Glenn, “Principles of simultaneous color projection television using fluid deformation,” J. Adhes. 79, 788–794 (1970).

1958 (1)

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefrigent plates,” Proc. Indian Acad. Sci., Sect. A 41, 137–144 (1955).

1953 (1)

E. Baumann, “The Fischer large screen projection system,” J. SMPTE 60, 344–356 (1953).
[CrossRef]

Anderson, J. E.

J. E. Anderson, P. E. Watson, P. J. Bos, LC3D Software (Artech House, 2001).

Asai, K.

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Devices 26, 1734–1737 (1979).
[CrossRef]

Awane, K.

N. Yamada, S. Kohzaki, F. Funada, K. Awane, “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Digest Tech. Papers 26, 575–578 (1995).

Baumann, E.

E. Baumann, “The Fischer large screen projection system,” J. SMPTE 60, 344–356 (1953).
[CrossRef]

Bos, P. J.

B. Wang, D. B. Chung, P. J. Bos, “Finite-difference time-domain optical calculations of polymer-LC composite electrodiffractive device,” Jpn. J. Appl. Phys., Part 1 43, 176–181 (2004).
[CrossRef]

Y. L. Zhang, P. J. Bos, D. B. Chung, “2-D modeling of the effect of electrode topography and interpixel gap on LCoS devices,” J. Soc. Inf. Disp. 34, 1382–1385 (2003).

J. E. Anderson, P. E. Watson, P. J. Bos, LC3D Software (Artech House, 2001).

Brinker, W.

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

Broer, D. J.

D. J. Broer, J. Lub, C. F. van Nostrum, M. M. Wienk, “Photo-induced diffusion during the formation of liquid-crystalline networks: A powerful tool to control polymer morphology down to the nanoscale level,” Recent Res. Dev. Polym. Sci. 2, 313–324 (1998).

C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
[CrossRef]

Chung, D. B.

B. Wang, D. B. Chung, P. J. Bos, “Finite-difference time-domain optical calculations of polymer-LC composite electrodiffractive device,” Jpn. J. Appl. Phys., Part 1 43, 176–181 (2004).
[CrossRef]

Y. L. Zhang, P. J. Bos, D. B. Chung, “2-D modeling of the effect of electrode topography and interpixel gap on LCoS devices,” J. Soc. Inf. Disp. 34, 1382–1385 (2003).

Cossalter, O.

J. Eschler, S. Dickmann, O. Cossalter, D. A. Mlynski, “Polarization independent LC phase modulators and their application,” J. Soc. Inf. Disp. 24, 809–812 (1993).

Dickmann, S.

J. Eschler, S. Dickmann, O. Cossalter, D. A. Mlynski, “Polarization independent LC phase modulators and their application,” J. Soc. Inf. Disp. 24, 809–812 (1993).

Ehrke, H. J.

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

Eschler, J.

J. Eschler, S. Dickmann, O. Cossalter, D. A. Mlynski, “Polarization independent LC phase modulators and their application,” J. Soc. Inf. Disp. 24, 809–812 (1993).

Fritsch, M. W.

M. W. Fritsch, H. Wohler, G. Haas, D. A. Mlynski, “A liquid-crystal phase modulator for large-screen projection,” Inf. Disp. 30, 85–90 (1989).

Fuhrman, T.

C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
[CrossRef]

Fukai, M.

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Devices 26, 1734–1737 (1979).
[CrossRef]

Funada, F.

N. Yamada, S. Kohzaki, F. Funada, K. Awane, “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Digest Tech. Papers 26, 575–578 (1995).

Gerhard-Multhaupt, R.

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

Glenn, W. E.

W. E. Glenn, “Principles of simultaneous color projection television using fluid deformation,” J. Adhes. 79, 788–794 (1970).

W. E. Glenn, “New color projection system,” J. Opt. Soc. Am. 48, 841–843 (1958).
[CrossRef]

Haas, G.

M. W. Fritsch, H. Wohler, G. Haas, D. A. Mlynski, “A liquid-crystal phase modulator for large-screen projection,” Inf. Disp. 30, 85–90 (1989).

Hori, Y.

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Devices 26, 1734–1737 (1979).
[CrossRef]

Kohzaki, S.

N. Yamada, S. Kohzaki, F. Funada, K. Awane, “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Digest Tech. Papers 26, 575–578 (1995).

Lien, A.

A. Lien, “A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
[CrossRef]

Love, G. D.

Lu, M.

M. Lu, K. H. Yang, “Reflective nematic LC Devices for LCoS applications,” J. Soc. Inf. Disp. 31, 1–7 (2000).

Lub, J.

D. J. Broer, J. Lub, C. F. van Nostrum, M. M. Wienk, “Photo-induced diffusion during the formation of liquid-crystalline networks: A powerful tool to control polymer morphology down to the nanoscale level,” Recent Res. Dev. Polym. Sci. 2, 313–324 (1998).

Mlynski, D. A.

J. Eschler, S. Dickmann, O. Cossalter, D. A. Mlynski, “Polarization independent LC phase modulators and their application,” J. Soc. Inf. Disp. 24, 809–812 (1993).

M. W. Fritsch, H. Wohler, G. Haas, D. A. Mlynski, “A liquid-crystal phase modulator for large-screen projection,” Inf. Disp. 30, 85–90 (1989).

Molzow, W. D.

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

Nolte, R. J. M.

C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
[CrossRef]

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefrigent plates,” Proc. Indian Acad. Sci., Sect. A 41, 137–144 (1955).

Roeder, H.

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

Rosin, Th.

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

Tepe, R.

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

van Nostrum, C. F.

D. J. Broer, J. Lub, C. F. van Nostrum, M. M. Wienk, “Photo-induced diffusion during the formation of liquid-crystalline networks: A powerful tool to control polymer morphology down to the nanoscale level,” Recent Res. Dev. Polym. Sci. 2, 313–324 (1998).

C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
[CrossRef]

Wang, B.

B. Wang, D. B. Chung, P. J. Bos, “Finite-difference time-domain optical calculations of polymer-LC composite electrodiffractive device,” Jpn. J. Appl. Phys., Part 1 43, 176–181 (2004).
[CrossRef]

Watson, P. E.

J. E. Anderson, P. E. Watson, P. J. Bos, LC3D Software (Artech House, 2001).

Wendorff, J. H.

C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
[CrossRef]

Wienk, M. M.

D. J. Broer, J. Lub, C. F. van Nostrum, M. M. Wienk, “Photo-induced diffusion during the formation of liquid-crystalline networks: A powerful tool to control polymer morphology down to the nanoscale level,” Recent Res. Dev. Polym. Sci. 2, 313–324 (1998).

Wohler, H.

M. W. Fritsch, H. Wohler, G. Haas, D. A. Mlynski, “A liquid-crystal phase modulator for large-screen projection,” Inf. Disp. 30, 85–90 (1989).

Yamada, N.

N. Yamada, S. Kohzaki, F. Funada, K. Awane, “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Digest Tech. Papers 26, 575–578 (1995).

Yang, K. H.

M. Lu, K. H. Yang, “Reflective nematic LC Devices for LCoS applications,” J. Soc. Inf. Disp. 31, 1–7 (2000).

Zhang, Y. L.

Y. L. Zhang, P. J. Bos, D. B. Chung, “2-D modeling of the effect of electrode topography and interpixel gap on LCoS devices,” J. Soc. Inf. Disp. 34, 1382–1385 (2003).

Appl. Opt. (1)

Chem. Mater. (1)

C. F. van Nostrum, R. J. M. Nolte, D. J. Broer, T. Fuhrman, J. H. Wendorff, “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chem. Mater. 10, 135–145 (1998).
[CrossRef]

IEEE Trans. Electron Devices (1)

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Devices 26, 1734–1737 (1979).
[CrossRef]

Inf. Disp. (1)

M. W. Fritsch, H. Wohler, G. Haas, D. A. Mlynski, “A liquid-crystal phase modulator for large-screen projection,” Inf. Disp. 30, 85–90 (1989).

J. Adhes. (1)

W. E. Glenn, “Principles of simultaneous color projection television using fluid deformation,” J. Adhes. 79, 788–794 (1970).

J. Opt. Soc. Am. (1)

J. SMPTE (1)

E. Baumann, “The Fischer large screen projection system,” J. SMPTE 60, 344–356 (1953).
[CrossRef]

J. Soc. Inf. Disp. (3)

J. Eschler, S. Dickmann, O. Cossalter, D. A. Mlynski, “Polarization independent LC phase modulators and their application,” J. Soc. Inf. Disp. 24, 809–812 (1993).

M. Lu, K. H. Yang, “Reflective nematic LC Devices for LCoS applications,” J. Soc. Inf. Disp. 31, 1–7 (2000).

Y. L. Zhang, P. J. Bos, D. B. Chung, “2-D modeling of the effect of electrode topography and interpixel gap on LCoS devices,” J. Soc. Inf. Disp. 34, 1382–1385 (2003).

Jpn. J. Appl. Phys., Part 1 (1)

B. Wang, D. B. Chung, P. J. Bos, “Finite-difference time-domain optical calculations of polymer-LC composite electrodiffractive device,” Jpn. J. Appl. Phys., Part 1 43, 176–181 (2004).
[CrossRef]

Liq. Cryst. (1)

A. Lien, “A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
[CrossRef]

Proc. Indian Acad. Sci., Sect. A (1)

S. Pancharatnam, “Achromatic combinations of birefrigent plates,” Proc. Indian Acad. Sci., Sect. A 41, 137–144 (1955).

Proc. SPIE (1)

R. Gerhard-Multhaupt, W. Brinker, H. J. Ehrke, W. D. Molzow, H. Roeder, Th. Rosin, R. Tepe, “Viscoelastic spatial light modulators and Schlieren-optical systems for HDTV projection displays,” Proc. SPIE 1255, 69–78 (1990).
[CrossRef]

Recent Res. Dev. Polym. Sci. (1)

D. J. Broer, J. Lub, C. F. van Nostrum, M. M. Wienk, “Photo-induced diffusion during the formation of liquid-crystalline networks: A powerful tool to control polymer morphology down to the nanoscale level,” Recent Res. Dev. Polym. Sci. 2, 313–324 (1998).

SID Int. Symp. Digest Tech. Papers (1)

N. Yamada, S. Kohzaki, F. Funada, K. Awane, “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Digest Tech. Papers 26, 575–578 (1995).

Other (1)

J. E. Anderson, P. E. Watson, P. J. Bos, LC3D Software (Artech House, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Nondiffractive state of polarization-independent LC phase modulator with polymer walls. This is a side view of a small region of the grating where the optic axis of the LC region and polymer wall region (shaded) are perpendicular to the plane of the drawing (circles). Incident p ( s ) -polarized light is shown exiting as s ( p ) -polarized light.

Fig. 2
Fig. 2

Diffraction state of polarization-independent LC phase modulator with polymer wall.

Fig. 3
Fig. 3

Two-dimensional director profile with Δ ε = 6 at 5 V .

Fig. 4
Fig. 4

Phase profile of one diffraction unit with Δ ε = 6 at 5 V , polymer wall width = LC region width = 3 μ m , λ = 550 nm .

Fig. 5
Fig. 5

Unnormalized far-field diffraction pattern with all 10 diffraction units off; Δ ε = 6 , polymer wall width = LC region width = 3 μ m , λ = 550 nm .

Fig. 6
Fig. 6

Normalized far-field diffraction pattern with all 10 diffraction units on at 5 V , Δ ε = 6 , polymer wall width = LC region width = 3 μ m , λ = 550 nm .

Fig. 7
Fig. 7

Phase profile of one diffraction unit with Δ ε = 6 at 5 V , polymer wall width = 3 μ m , LC region width = 4 μ m , λ = 550 nm .

Fig. 8
Fig. 8

Normalized far-field diffraction pattern with all 10 diffraction units on at 5 V with Δ ε = 6 , polymer wall width = 3 μ m , LC region width = 4 μ m , λ = 550 nm .

Fig. 9
Fig. 9

Phase profile of one diffraction unit with Δ ε = 10 at 5 V , polymer wall width = LC region width = 3 μ m , λ = 550 nm .

Fig. 10
Fig. 10

Normalized far-field diffraction pattern with all 10 diffraction units on at 5 V , with Δ ε = 10 , polymer wall width = LC region width = 3 μ m , λ = 550 nm .

Fig. 11
Fig. 11

Formation of polymer walls from aligned RM82 units. The arrows indicate incident UV light; the cell is rubbed antiparallel along the z direction.

Fig. 12
Fig. 12

Cell under polarized microscope: (a) OFF state, (b) ON state.

Fig. 13
Fig. 13

Measurement setup: 1, red laser ( 632.8 nm ) ; 2, polarizer; 3, grating; 4, QWP; 5, mirror; 6, analyzer; 7, detector.

Fig. 14
Fig. 14

Measured result.

Fig. 15
Fig. 15

Dark-field reflective schlieren optical system; 1, reflective–diffractive valve; 2, schlieren lens; 3, plane of diffraction; 4, projection lens; 5, screen; 6, light source; 7, lens.

Metrics