Abstract

A fast coupled-integral-equation (CIE) technique is developed to compute the plane-TE-wave scattering by a wide class of periodic 2D inhomogeneous structures with curvilinear boundaries, which includes finite-thickness relief and rod gratings made of homogeneous material as special cases. The CIEs in the spectral domain are derived from the standard volume electric field integral equation. The kernel of the CIEs is of Picard type and offers therefore the possibility of deriving recursions, which allow the computation of the convolution integrals occurring in the CIEs with linear amounts of arithmetic complexity and memory. To utilize this advantage, the CIEs are solved iteratively. We apply the biconjugate gradient stabilized method. To make the iterative solution process faster, an efficient preconditioning operator (PO) is proposed that is based on a formal analytical inversion of the CIEs. The application of the PO also takes only linear complexity and memory. Numerical studies are carried out to demonstrate the potential and flexibility of the CIE technique proposed. Though the best efficiency and accuracy are observed at either low permittivity contrast or high conductivity, the technique can be used in a wide range of variation of material parameters of the structures including when they contain components made of both dielectrics with high permittivity and typical metals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription