Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Speckle reduction by I-divergence regularization in optical coherence tomography

Not Accessible

Your library or personal account may give you access

Abstract

For optical coherence tomography (OCT), ultrasound, synthetic-aperture radar, and other coherent ranging methods, speckle can cause spurious detail that detracts from the utility of the image. It is a problem inherent to imaging densely scattering objects with limited bandwidth. Using a method of regularization by minimizing Csiszar’s I-divergence measure, we derive a method of speckle minimization that produces an image that both is consistent with the known data and extrapolates additional detail based on constraints on the magnitude of the image. This method is demonstrated on a test image and on an OCT image of a Xenopus laevis tadpole.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Speckle noise reduction algorithm with total variation regularization in optical coherence tomography

Guanghua Gong, Hongming Zhang, and Minyu Yao
Opt. Express 23(19) 24699-24712 (2015)

Speckle-constrained variational methods for image restoration in optical coherence tomography

Daiqiang Yin, Ying Gu, and Ping Xue
J. Opt. Soc. Am. A 30(5) 878-885 (2013)

Efficient reduction of speckle noise in Optical Coherence Tomography

Maciej Szkulmowski, Iwona Gorczynska, Daniel Szlag, Marcin Sylwestrzak, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 20(2) 1337-1359 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved