Abstract

After observers have adapted to an edge that is spatially blurred or sharpened, a focused edge appears too sharp or blurred, respectively. These adjustments to blur may play an important role in calibrating spatial sensitivity. We examined whether similar adjustments influence the perception of temporal edges, by measuring the appearance of a step change in the luminance of a uniform field after adapting to blurred or sharpened transitions. Stimuli were square-wave alternations (at 1to8Hz) filtered by changing the slope of the amplitude spectrum. A two-alternative-forced-choice task was used to adjust the slope until it appeared as a step change, or until it matched the perceived transitions in a reference stimulus. Observers could accurately set the waveform to a square wave, but only at the slower alternation rates. However, these settings were strongly biased by prior adaptation to filtered stimuli, or when the stimuli were viewed within temporally filtered surrounds. Control experiments suggest that the latter induction effects result directly from the temporal blur and are not simply a consequence of brightness induction in the fields. These results suggest that adaptation and induction adjust visual coding so that images are focused not only in space but also in time.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Webster, “Pattern selective adaptation in color and form perception,” in The Visual Neurosciences Vol. 2, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2003), pp. 936–947.
  2. M. A. Webster, J. S. Werner, D. J. Field, “Adaptation and the phenomenology of perception,” in Fitting the Mind to the World: Adaptation and Aftereffects in High Level Vision: Advances in Visual Cognition Series, Vol. 2, C. Clifford and G. Rhodes, eds. (Oxford U. Press, 2005), pp. 241–277.
    [CrossRef]
  3. D. I. A. MacLeod, “Receptoral constraints on colour appearance,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson and S. Zeki, eds. (MacMillan, 1985), p. 103.
  4. J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
    [CrossRef]
  5. M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
    [CrossRef] [PubMed]
  6. D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559–601 (1994).
    [CrossRef]
  7. P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
    [CrossRef]
  8. D. W. Dong, J. J. Atick, “Statistics of time-varying images,” Network Comput. Neural Syst. 6, 345–358 (1995).
    [CrossRef]
  9. J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” Proc. SPIE 2657, 139–143 (1996).
    [CrossRef]
  10. A. B. Watson, “Temporal Sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), pp. 6.1–6.43.
  11. D. M. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
    [CrossRef] [PubMed]
  12. G. Walsh, W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28, 1207–1221 (1988).
    [CrossRef] [PubMed]
  13. R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
    [CrossRef] [PubMed]
  14. S. M. Wuerger, H. Owens, S. Westland, “Blur tolerance for luminance and chromatic stimuli,” J. Opt. Soc. Am. A 18, 1231–1239 (2001).
    [CrossRef]
  15. D. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural images,” Vision Res. 37, 3367–3383 (1997).
    [CrossRef]
  16. Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
    [CrossRef] [PubMed]
  17. A. G. Shapiro, S. M. Hood, J. D. Mollon, “Temporal frequency and contrast adaptation,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford U. Press, 2003), pp. 138–144.
    [CrossRef]
  18. R. A. Smith, “Studies of temporal frequency adaptation in visual contrast sensitivity,” J. Physiol. (London) 216, 531–552 (1971).
  19. M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
    [CrossRef] [PubMed]
  20. S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
    [CrossRef] [PubMed]
  21. R. L. De Valois, M. A. Webster, K. K. De Valois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
    [CrossRef] [PubMed]
  22. Q. Zaidi, N. Zipser, “Induced contrast from radial patterns,” Vision Res. 33, 1281–1286 (1993).
    [CrossRef] [PubMed]
  23. R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, 1988).
  24. V. A. Billock, T. H. Harding, “Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity,” J. Physiol. (London) 490, 509–517 (1996).
  25. R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
    [CrossRef] [PubMed]
  26. M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
    [CrossRef] [PubMed]
  27. B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
    [CrossRef] [PubMed]
  28. A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
    [CrossRef] [PubMed]
  29. R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
    [CrossRef] [PubMed]
  30. T. H. Nilsson, C. F. Richmond, T. M. Nelson, “Flicker adaptation shows evidence of many visual channels selectively sensitive to temporal frequency,” Vision Res. 15, 621–624 (1975).
    [CrossRef] [PubMed]
  31. A. Pantle, “Flicker adaptation—I. Effect on visual sensitivity to temporal fluctuations of light intensity,” Vision Res. 11, 943–952 (1971).
    [CrossRef] [PubMed]
  32. R. A. Smith, “Adaptation of visual contrast sensitivity to specific temporal frequencies,” Vision Res. 10, 275–279 (1970).
    [CrossRef] [PubMed]
  33. C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
    [CrossRef] [PubMed]
  34. G. Mather, F. Verstraten, and S. Anstis, eds., The Motion Aftereffect (MIT Press, 1998).
  35. J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
    [CrossRef] [PubMed]
  36. S. M. Anstis, “Visual adaptation to gradual change of intensity,” Science 155(763), 710–712 (1967).
    [CrossRef] [PubMed]
  37. J. Krauskopf, Q. Zaidi, “Induced desensitization,” Vision Res. 26, 759–762 (1986).
    [CrossRef] [PubMed]
  38. S. M. Anstis, “Interactions between simultaneous contrast and adaptation to gradual change of luminance,” Perception 8, 487–495 (1979).
    [CrossRef] [PubMed]
  39. G. J. Burton, I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987).
    [CrossRef] [PubMed]
  40. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
    [CrossRef] [PubMed]
  41. J. J. Atick, Z. Li, A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559–572 (1992).
    [CrossRef]
  42. B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature (London) 381, 607–609 (1996).
    [CrossRef]
  43. J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
    [CrossRef] [PubMed]
  44. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
    [CrossRef] [PubMed]
  45. D. W. Dong, J. J. Atick, “Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus,” Network Comput. Neural Syst. 6, 159–178 (1995).
    [CrossRef]
  46. J. H. van Hateren, D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 2315–2320 (1998).
    [CrossRef]
  47. A. C. Bilson, M. F. Fry, S. L. Moore, M. A. Webster, “Phase-specific interactions in the perceived blur of edges,” J. Vision 3, 601a (2003).
    [CrossRef]

2004 (2)

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef] [PubMed]

2003 (1)

A. C. Bilson, M. F. Fry, S. L. Moore, M. A. Webster, “Phase-specific interactions in the perceived blur of edges,” J. Vision 3, 601a (2003).
[CrossRef]

2002 (1)

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[CrossRef] [PubMed]

1998 (2)

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

J. H. van Hateren, D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 2315–2320 (1998).
[CrossRef]

1997 (1)

D. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural images,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

1996 (4)

J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
[CrossRef]

J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” Proc. SPIE 2657, 139–143 (1996).
[CrossRef]

V. A. Billock, T. H. Harding, “Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity,” J. Physiol. (London) 490, 509–517 (1996).

B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature (London) 381, 607–609 (1996).
[CrossRef]

1995 (2)

D. W. Dong, J. J. Atick, “Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus,” Network Comput. Neural Syst. 6, 159–178 (1995).
[CrossRef]

D. W. Dong, J. J. Atick, “Statistics of time-varying images,” Network Comput. Neural Syst. 6, 345–358 (1995).
[CrossRef]

1994 (2)

D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559–601 (1994).
[CrossRef]

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

1993 (2)

Q. Zaidi, N. Zipser, “Induced contrast from radial patterns,” Vision Res. 33, 1281–1286 (1993).
[CrossRef] [PubMed]

J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
[CrossRef] [PubMed]

1992 (1)

J. J. Atick, Z. Li, A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559–572 (1992).
[CrossRef]

1990 (1)

D. M. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

1988 (1)

G. Walsh, W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28, 1207–1221 (1988).
[CrossRef] [PubMed]

1987 (2)

1986 (2)

J. Krauskopf, Q. Zaidi, “Induced desensitization,” Vision Res. 26, 759–762 (1986).
[CrossRef] [PubMed]

R. L. De Valois, M. A. Webster, K. K. De Valois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef] [PubMed]

1984 (2)

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

1983 (1)

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

1982 (1)

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

1981 (1)

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

1980 (1)

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
[CrossRef] [PubMed]

1979 (1)

S. M. Anstis, “Interactions between simultaneous contrast and adaptation to gradual change of luminance,” Perception 8, 487–495 (1979).
[CrossRef] [PubMed]

1975 (1)

T. H. Nilsson, C. F. Richmond, T. M. Nelson, “Flicker adaptation shows evidence of many visual channels selectively sensitive to temporal frequency,” Vision Res. 15, 621–624 (1975).
[CrossRef] [PubMed]

1971 (2)

A. Pantle, “Flicker adaptation—I. Effect on visual sensitivity to temporal fluctuations of light intensity,” Vision Res. 11, 943–952 (1971).
[CrossRef] [PubMed]

R. A. Smith, “Studies of temporal frequency adaptation in visual contrast sensitivity,” J. Physiol. (London) 216, 531–552 (1971).

1970 (1)

R. A. Smith, “Adaptation of visual contrast sensitivity to specific temporal frequencies,” Vision Res. 10, 275–279 (1970).
[CrossRef] [PubMed]

1969 (1)

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

1967 (1)

S. M. Anstis, “Visual adaptation to gradual change of intensity,” Science 155(763), 710–712 (1967).
[CrossRef] [PubMed]

Albrecht, D. G.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

Anstis, S. M.

S. M. Anstis, “Interactions between simultaneous contrast and adaptation to gradual change of luminance,” Perception 8, 487–495 (1979).
[CrossRef] [PubMed]

S. M. Anstis, “Visual adaptation to gradual change of intensity,” Science 155(763), 710–712 (1967).
[CrossRef] [PubMed]

Artal, P.

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Atick, J. J.

D. W. Dong, J. J. Atick, “Statistics of time-varying images,” Network Comput. Neural Syst. 6, 345–358 (1995).
[CrossRef]

D. W. Dong, J. J. Atick, “Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus,” Network Comput. Neural Syst. 6, 159–178 (1995).
[CrossRef]

J. J. Atick, Z. Li, A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559–572 (1992).
[CrossRef]

Billock, V. A.

V. A. Billock, T. H. Harding, “Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity,” J. Physiol. (London) 490, 509–517 (1996).

Bilson, A. C.

A. C. Bilson, M. F. Fry, S. L. Moore, M. A. Webster, “Phase-specific interactions in the perceived blur of edges,” J. Vision 3, 601a (2003).
[CrossRef]

Blakemore, C.

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

Brady, N.

D. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural images,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

Burton, G. J.

Charman, W. N.

G. Walsh, W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28, 1207–1221 (1988).
[CrossRef] [PubMed]

Chen, L.

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Cottaris, N. P.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[CrossRef] [PubMed]

De Valois, K. K.

R. L. De Valois, M. A. Webster, K. K. De Valois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, 1988).

De Valois, R. L.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[CrossRef] [PubMed]

R. L. De Valois, M. A. Webster, K. K. De Valois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef] [PubMed]

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, 1988).

Dhruv, N. T.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef] [PubMed]

Dong, D. W.

D. W. Dong, J. J. Atick, “Statistics of time-varying images,” Network Comput. Neural Syst. 6, 345–358 (1995).
[CrossRef]

D. W. Dong, J. J. Atick, “Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus,” Network Comput. Neural Syst. 6, 159–178 (1995).
[CrossRef]

Elfar, S. D.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[CrossRef] [PubMed]

Fernandez, E. J.

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Field, D.

D. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural images,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

Field, D. J.

B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature (London) 381, 607–609 (1996).
[CrossRef]

D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559–601 (1994).
[CrossRef]

D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
[CrossRef] [PubMed]

M. A. Webster, J. S. Werner, D. J. Field, “Adaptation and the phenomenology of perception,” in Fitting the Mind to the World: Adaptation and Aftereffects in High Level Vision: Advances in Visual Cognition Series, Vol. 2, C. Clifford and G. Rhodes, eds. (Oxford U. Press, 2005), pp. 241–277.
[CrossRef]

Fredericksen, R. E.

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

Fry, M. F.

A. C. Bilson, M. F. Fry, S. L. Moore, M. A. Webster, “Phase-specific interactions in the perceived blur of edges,” J. Vision 3, 601a (2003).
[CrossRef]

Georgeson, M. A.

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[CrossRef] [PubMed]

Harding, T. H.

V. A. Billock, T. H. Harding, “Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity,” J. Physiol. (London) 490, 509–517 (1996).

Hess, R. F.

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

Hood, S. M.

A. G. Shapiro, S. M. Hood, J. D. Mollon, “Temporal frequency and contrast adaptation,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford U. Press, 2003), pp. 138–144.
[CrossRef]

Klein, S.

D. M. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, Q. Zaidi, “Induced desensitization,” Vision Res. 26, 759–762 (1986).
[CrossRef] [PubMed]

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
[CrossRef] [PubMed]

Lennie, P.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef] [PubMed]

Levi, D. M.

D. M. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

Li, Z.

J. J. Atick, Z. Li, A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559–572 (1992).
[CrossRef]

Lingelbach, B.

R. L. De Valois, M. A. Webster, K. K. De Valois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef] [PubMed]

MacLeod, D. I. A.

D. I. A. MacLeod, “Receptoral constraints on colour appearance,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson and S. Zeki, eds. (MacMillan, 1985), p. 103.

Mahon, L. E.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[CrossRef] [PubMed]

Makous, W.

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

Mandler, M. B.

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

Manzanera, S.

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Mather, G.

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

Mollon, J. D.

A. G. Shapiro, S. M. Hood, J. D. Mollon, “Temporal frequency and contrast adaptation,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford U. Press, 2003), pp. 138–144.
[CrossRef]

Moore, S. L.

A. C. Bilson, M. F. Fry, S. L. Moore, M. A. Webster, “Phase-specific interactions in the perceived blur of edges,” J. Vision 3, 601a (2003).
[CrossRef]

Moorhead, I. R.

Morgan, M. J.

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

Moulden, B.

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

Nelson, T. M.

T. H. Nilsson, C. F. Richmond, T. M. Nelson, “Flicker adaptation shows evidence of many visual channels selectively sensitive to temporal frequency,” Vision Res. 15, 621–624 (1975).
[CrossRef] [PubMed]

Nilsson, T. H.

T. H. Nilsson, C. F. Richmond, T. M. Nelson, “Flicker adaptation shows evidence of many visual channels selectively sensitive to temporal frequency,” Vision Res. 15, 621–624 (1975).
[CrossRef] [PubMed]

Olshausen, B. A.

B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature (London) 381, 607–609 (1996).
[CrossRef]

Owens, H.

Pantle, A.

A. Pantle, “Flicker adaptation—I. Effect on visual sensitivity to temporal fluctuations of light intensity,” Vision Res. 11, 943–952 (1971).
[CrossRef] [PubMed]

Peirce, J. W.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef] [PubMed]

Redlich, A. N.

J. J. Atick, Z. Li, A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559–572 (1992).
[CrossRef]

Renshaw, J.

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

Richmond, C. F.

T. H. Nilsson, C. F. Richmond, T. M. Nelson, “Flicker adaptation shows evidence of many visual channels selectively sensitive to temporal frequency,” Vision Res. 15, 621–624 (1975).
[CrossRef] [PubMed]

Robson, J. G.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

Ruderman, D. L.

J. H. van Hateren, D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 2315–2320 (1998).
[CrossRef]

Shapiro, A. G.

A. G. Shapiro, S. M. Hood, J. D. Mollon, “Temporal frequency and contrast adaptation,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford U. Press, 2003), pp. 138–144.
[CrossRef]

Singer, B.

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Smith, R. A.

R. A. Smith, “Studies of temporal frequency adaptation in visual contrast sensitivity,” J. Physiol. (London) 216, 531–552 (1971).

R. A. Smith, “Adaptation of visual contrast sensitivity to specific temporal frequencies,” Vision Res. 10, 275–279 (1970).
[CrossRef] [PubMed]

Solomon, S. G.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef] [PubMed]

Sutton, P.

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

Tadmor, Y.

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

Thorell, L. G.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

Tolhurst, D. J.

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

van der Schaaf, A.

J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” Proc. SPIE 2657, 139–143 (1996).
[CrossRef]

van Hateren, J. H.

J. H. van Hateren, D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 2315–2320 (1998).
[CrossRef]

J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” Proc. SPIE 2657, 139–143 (1996).
[CrossRef]

J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
[CrossRef] [PubMed]

Walsh, G.

G. Walsh, W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28, 1207–1221 (1988).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

A. B. Watson, “Temporal Sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), pp. 6.1–6.43.

Watt, R. J.

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

Webster, M. A.

A. C. Bilson, M. F. Fry, S. L. Moore, M. A. Webster, “Phase-specific interactions in the perceived blur of edges,” J. Vision 3, 601a (2003).
[CrossRef]

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[CrossRef] [PubMed]

M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
[CrossRef] [PubMed]

R. L. De Valois, M. A. Webster, K. K. De Valois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef] [PubMed]

M. A. Webster, “Pattern selective adaptation in color and form perception,” in The Visual Neurosciences Vol. 2, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2003), pp. 936–947.

M. A. Webster, J. S. Werner, D. J. Field, “Adaptation and the phenomenology of perception,” in Fitting the Mind to the World: Adaptation and Aftereffects in High Level Vision: Advances in Visual Cognition Series, Vol. 2, C. Clifford and G. Rhodes, eds. (Oxford U. Press, 2005), pp. 241–277.
[CrossRef]

Webster, S. M.

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[CrossRef] [PubMed]

Werner, J. S.

J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
[CrossRef]

M. A. Webster, J. S. Werner, D. J. Field, “Adaptation and the phenomenology of perception,” in Fitting the Mind to the World: Adaptation and Aftereffects in High Level Vision: Advances in Visual Cognition Series, Vol. 2, C. Clifford and G. Rhodes, eds. (Oxford U. Press, 2005), pp. 241–277.
[CrossRef]

Westland, S.

Williams, D. R.

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Wilson, J. A.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[CrossRef] [PubMed]

M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
[CrossRef] [PubMed]

Wuerger, S. M.

Zaidi, Q.

Q. Zaidi, N. Zipser, “Induced contrast from radial patterns,” Vision Res. 33, 1281–1286 (1993).
[CrossRef] [PubMed]

J. Krauskopf, Q. Zaidi, “Induced desensitization,” Vision Res. 26, 759–762 (1986).
[CrossRef] [PubMed]

Zipser, N.

Q. Zaidi, N. Zipser, “Induced contrast from radial patterns,” Vision Res. 33, 1281–1286 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (2)

R. A. Smith, “Studies of temporal frequency adaptation in visual contrast sensitivity,” J. Physiol. (London) 216, 531–552 (1971).

V. A. Billock, T. H. Harding, “Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity,” J. Physiol. (London) 490, 509–517 (1996).

J. Vision (2)

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

A. C. Bilson, M. F. Fry, S. L. Moore, M. A. Webster, “Phase-specific interactions in the perceived blur of edges,” J. Vision 3, 601a (2003).
[CrossRef]

Nat. Neurosci. (1)

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[CrossRef] [PubMed]

Nature (London) (1)

B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature (London) 381, 607–609 (1996).
[CrossRef]

Network Comput. Neural Syst. (2)

D. W. Dong, J. J. Atick, “Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus,” Network Comput. Neural Syst. 6, 159–178 (1995).
[CrossRef]

D. W. Dong, J. J. Atick, “Statistics of time-varying images,” Network Comput. Neural Syst. 6, 345–358 (1995).
[CrossRef]

Neural Comput. (2)

D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559–601 (1994).
[CrossRef]

J. J. Atick, Z. Li, A. N. Redlich, “Understanding retinal color coding from first principles,” Neural Comput. 4, 559–572 (1992).
[CrossRef]

Neuron (1)

S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef] [PubMed]

Perception (2)

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

S. M. Anstis, “Interactions between simultaneous contrast and adaptation to gradual change of luminance,” Perception 8, 487–495 (1979).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

J. H. van Hateren, D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 2315–2320 (1998).
[CrossRef]

Proc. SPIE (1)

J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” Proc. SPIE 2657, 139–143 (1996).
[CrossRef]

Prog. Retin. Eye Res. (1)

J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
[CrossRef]

Science (2)

S. M. Anstis, “Visual adaptation to gradual change of intensity,” Science 155(763), 710–712 (1967).
[CrossRef] [PubMed]

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

Vision Res. (19)

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

J. Krauskopf, Q. Zaidi, “Induced desensitization,” Vision Res. 26, 759–762 (1986).
[CrossRef] [PubMed]

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[CrossRef] [PubMed]

T. H. Nilsson, C. F. Richmond, T. M. Nelson, “Flicker adaptation shows evidence of many visual channels selectively sensitive to temporal frequency,” Vision Res. 15, 621–624 (1975).
[CrossRef] [PubMed]

A. Pantle, “Flicker adaptation—I. Effect on visual sensitivity to temporal fluctuations of light intensity,” Vision Res. 11, 943–952 (1971).
[CrossRef] [PubMed]

R. A. Smith, “Adaptation of visual contrast sensitivity to specific temporal frequencies,” Vision Res. 10, 275–279 (1970).
[CrossRef] [PubMed]

R. L. De Valois, M. A. Webster, K. K. De Valois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef] [PubMed]

Q. Zaidi, N. Zipser, “Induced contrast from radial patterns,” Vision Res. 33, 1281–1286 (1993).
[CrossRef] [PubMed]

M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
[CrossRef] [PubMed]

D. M. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28, 1207–1221 (1988).
[CrossRef] [PubMed]

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

D. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural images,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
[CrossRef] [PubMed]

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

Other (7)

A. G. Shapiro, S. M. Hood, J. D. Mollon, “Temporal frequency and contrast adaptation,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford U. Press, 2003), pp. 138–144.
[CrossRef]

A. B. Watson, “Temporal Sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), pp. 6.1–6.43.

M. A. Webster, “Pattern selective adaptation in color and form perception,” in The Visual Neurosciences Vol. 2, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2003), pp. 936–947.

M. A. Webster, J. S. Werner, D. J. Field, “Adaptation and the phenomenology of perception,” in Fitting the Mind to the World: Adaptation and Aftereffects in High Level Vision: Advances in Visual Cognition Series, Vol. 2, C. Clifford and G. Rhodes, eds. (Oxford U. Press, 2005), pp. 241–277.
[CrossRef]

D. I. A. MacLeod, “Receptoral constraints on colour appearance,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson and S. Zeki, eds. (MacMillan, 1985), p. 103.

R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, 1988).

G. Mather, F. Verstraten, and S. Anstis, eds., The Motion Aftereffect (MIT Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Examples of the luminance profiles for a temporally focused, blurred, or sharpened step change.

Fig. 2
Fig. 2

Stimulus slopes perceived as a square wave alternation in the flicker. Each panel plots the results for an individual observer. Points show the mean setting ± 1 standard deviation. Open triangles: settings for a 1   cycle alternation in the field (presented in temporal sine phase). Solid triangles: results for a 1 s presentation at each frequency.

Fig. 3
Fig. 3

Effects of adaptation on the perceived temporal edges. Points plot the physical slope differences between two tests that appeared matched, one in a field following adaptation to temporally sharpened steps ( slope = 0.5 ) and the other following temporally blurred steps ( slope = 1.5 ) . Open symbols: sharpened adaptation in the top field. Solid symbols: blurred adaptation at top.

Fig. 4
Fig. 4

Induction in spatial edges. The center row of bars is a square wave. However, the center bars at left appear sharpened because they abut blurred bars, while the center bars at right appear blurred because the surrounding bars are physically sharpened.

Fig. 5
Fig. 5

Effects of induction on perceived temporal edges. Points plot the slope differences between two tests that appeared matched, one surrounded by a field with sharpened flicker ( slope = 0.5 ) and the other in a surround with blurred flicker ( slope = 1.5 ) . Open symbols: sharp surround flicker on left. Solid symbols: blurred surround flicker on left.

Fig. 6
Fig. 6

Difference in matching slopes when the two surround modulations were varied 180 deg out of phase with the center modulation.

Fig. 7
Fig. 7

Temporal blur matches when the center or surround was either a uniform field or checkerboard pattern. U/U: uniform surround and center. U/C: uniform surround and checkerboard center. C/U: checkerboard surround and uniform center.

Fig. 8
Fig. 8

Matches to the brightness variations induced by blurred (solid circle) or sharpened (open circle) variations in the surround.

Metrics