Abstract

Recent studies have shown that cells in the primary visual cortex can, in addition to borders, also encode surface brightness. Whether the brightness is encoded by a large extraclassical receptive field or by a filling-in type mechanism activated by the luminance border is not known. These explanations imply different spatial frequency tunings for the underlying mechanism. In a psychophysical masking paradigm we measured spatial frequency tuning functions for identification of both luminance polarity (bright/dark) and luminance border orientation of oval and circular luminance patches with variable diameters (0.210deg). For both tasks we obtained nearly overlapping narrow (1.5 octave) bandpass masking tuning functions centered at 1.55.0cdeg. Stimulus size and shape had only minimal effect on the tuning functions. The results favor the idea of brightness filling-in and suggest that the cells activated by the luminance border modulate the activity of the cells signaling surface brightness. Further, the brightness processing mechanism is spatial frequency selective.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
    [CrossRef]
  2. R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
    [CrossRef]
  3. A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
    [CrossRef] [PubMed]
  4. S. P. MacEvoy, W. Kim, M. A. Paradiso, “Integration of surface information in primary visual cortex,” Nat. Neurosci. 1, 616–620 (1998).
    [CrossRef]
  5. A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
    [PubMed]
  6. C. P. Hung, B. M. Ramsden, L. M. Chen, A. W. Roe, “Building surfaces from borders in areas 17 and 18 of the cat,” Vision Res. 41, 1389–1407 (2001).
    [CrossRef] [PubMed]
  7. M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
    [PubMed]
  8. H. J. Gerrits, A. J. Vendrik, “Simultaneous contrast, filling-in process and information processing in man’s visual system,” Exp. Brain Res. 11, 411–430 (1970).
    [CrossRef] [PubMed]
  9. S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
    [CrossRef] [PubMed]
  10. M. A. Paradiso, K. Nakayma, “Brightness perception and filling-in,” Vision Res. 31, 1221–1236 (1991).
    [CrossRef] [PubMed]
  11. L. Pessoa, E. Mignolla, H. Neumann, “A contrast- and luminance-driven multiscale network model of brightness perception,” Vision Res. 35, 2201–2223 (1995).
    [CrossRef] [PubMed]
  12. L. Pessoa, “Mach-band attenuation by adjacent stimuli: experiment and filling-in simulations,” Perception 25, 452–442 (1996).
    [CrossRef]
  13. M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
    [CrossRef] [PubMed]
  14. M. P. Davey, T. Maddess, M. V. Srinivasan, “The spatiotemporal properties of the Craik–O’Brien–Cornsweet effect are consistent with ‘filling-in’,” Vision Res. 38, 2037–2046 (1998).
    [CrossRef] [PubMed]
  15. R. J. Watt, M. J. Morgan, “A theory of the primitive spatial code in human vision,” Vision Res. 25, 1661–1674 (1985).
    [CrossRef] [PubMed]
  16. F. Kingdom, B. Moulden, “A multi-channel approach to brightness coding,” Vision Res. 32, 1565–1582 (1992).
    [CrossRef] [PubMed]
  17. M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221–245 (1988).
    [CrossRef]
  18. F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001a).
    [CrossRef]
  19. F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001b).
    [CrossRef]
  20. D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  21. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  22. C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of the retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517–552 (1966).
  23. P. Whittle, P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vision Res. 23, 1095–1110 (1969).
    [CrossRef]
  24. R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research Vol. 3, N. Osborne and G. Chader, eds. (Pergamon, 1984), pp. 263–346.
    [CrossRef]
  25. D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise and the efficiency of letter identification,” Vision Res. 31, 1399–1415 (1991).
    [CrossRef]
  26. J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
    [CrossRef]
  27. N. J. Majaj, D. G. Pelli, P. Kurshan, M. Palomares, “The role of spatial frequency channels in letter identification,” Vision Res. 42, 1165–1184 (2002).
    [CrossRef] [PubMed]
  28. T. L. Peromaa, P. I. Laurinen, “Separation of edge detection and brightness perception,” Vision Res. 44, 1919–1925 (2004).
    [CrossRef] [PubMed]

2004 (1)

T. L. Peromaa, P. I. Laurinen, “Separation of edge detection and brightness perception,” Vision Res. 44, 1919–1925 (2004).
[CrossRef] [PubMed]

2002 (1)

N. J. Majaj, D. G. Pelli, P. Kurshan, M. Palomares, “The role of spatial frequency channels in letter identification,” Vision Res. 42, 1165–1184 (2002).
[CrossRef] [PubMed]

2001 (2)

C. P. Hung, B. M. Ramsden, L. M. Chen, A. W. Roe, “Building surfaces from borders in areas 17 and 18 of the cat,” Vision Res. 41, 1389–1407 (2001).
[CrossRef] [PubMed]

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

1999 (1)

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

1998 (2)

S. P. MacEvoy, W. Kim, M. A. Paradiso, “Integration of surface information in primary visual cortex,” Nat. Neurosci. 1, 616–620 (1998).
[CrossRef]

M. P. Davey, T. Maddess, M. V. Srinivasan, “The spatiotemporal properties of the Craik–O’Brien–Cornsweet effect are consistent with ‘filling-in’,” Vision Res. 38, 2037–2046 (1998).
[CrossRef] [PubMed]

1996 (3)

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

L. Pessoa, “Mach-band attenuation by adjacent stimuli: experiment and filling-in simulations,” Perception 25, 452–442 (1996).
[CrossRef]

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

1995 (1)

L. Pessoa, E. Mignolla, H. Neumann, “A contrast- and luminance-driven multiscale network model of brightness perception,” Vision Res. 35, 2201–2223 (1995).
[CrossRef] [PubMed]

1994 (1)

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

1992 (1)

F. Kingdom, B. Moulden, “A multi-channel approach to brightness coding,” Vision Res. 32, 1565–1582 (1992).
[CrossRef] [PubMed]

1991 (2)

M. A. Paradiso, K. Nakayma, “Brightness perception and filling-in,” Vision Res. 31, 1221–1236 (1991).
[CrossRef] [PubMed]

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise and the efficiency of letter identification,” Vision Res. 31, 1399–1415 (1991).
[CrossRef]

1988 (2)

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221–245 (1988).
[CrossRef]

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

1985 (1)

R. J. Watt, M. J. Morgan, “A theory of the primitive spatial code in human vision,” Vision Res. 25, 1661–1674 (1985).
[CrossRef] [PubMed]

1982 (2)

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef]

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef]

1970 (1)

H. J. Gerrits, A. J. Vendrik, “Simultaneous contrast, filling-in process and information processing in man’s visual system,” Exp. Brain Res. 11, 411–430 (1970).
[CrossRef] [PubMed]

1969 (1)

P. Whittle, P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vision Res. 23, 1095–1110 (1969).
[CrossRef]

1968 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

1966 (1)

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of the retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517–552 (1966).

1962 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Albrecht, D. G.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef]

Burr, D. C.

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221–245 (1988).
[CrossRef]

Challands, P. D. C.

P. Whittle, P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vision Res. 23, 1095–1110 (1969).
[CrossRef]

Chen, L. M.

C. P. Hung, B. M. Ramsden, L. M. Chen, A. W. Roe, “Building surfaces from borders in areas 17 and 18 of the cat,” Vision Res. 41, 1389–1407 (2001).
[CrossRef] [PubMed]

Davey, M. P.

M. P. Davey, T. Maddess, M. V. Srinivasan, “The spatiotemporal properties of the Craik–O’Brien–Cornsweet effect are consistent with ‘filling-in’,” Vision Res. 38, 2037–2046 (1998).
[CrossRef] [PubMed]

DeValois, R. L.

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef]

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef]

Enroth-Cugell, C.

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of the retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517–552 (1966).

R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research Vol. 3, N. Osborne and G. Chader, eds. (Pergamon, 1984), pp. 263–346.
[CrossRef]

Gerrits, H. J.

H. J. Gerrits, A. J. Vendrik, “Simultaneous contrast, filling-in process and information processing in man’s visual system,” Exp. Brain Res. 11, 411–430 (1970).
[CrossRef] [PubMed]

Grossberg, S.

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

Hahn, S.

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

Hepler, N.

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef]

Hill, N. J.

F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001b).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001a).
[CrossRef]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Hung, C. P.

C. P. Hung, B. M. Ramsden, L. M. Chen, A. W. Roe, “Building surfaces from borders in areas 17 and 18 of the cat,” Vision Res. 41, 1389–1407 (2001).
[CrossRef] [PubMed]

Kim, W.

S. P. MacEvoy, W. Kim, M. A. Paradiso, “Integration of surface information in primary visual cortex,” Nat. Neurosci. 1, 616–620 (1998).
[CrossRef]

Kingdom, F.

F. Kingdom, B. Moulden, “A multi-channel approach to brightness coding,” Vision Res. 32, 1565–1582 (1992).
[CrossRef] [PubMed]

Kinoshita, M.

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

Komatsu, H.

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

Kurshan, P.

N. J. Majaj, D. G. Pelli, P. Kurshan, M. Palomares, “The role of spatial frequency channels in letter identification,” Vision Res. 42, 1165–1184 (2002).
[CrossRef] [PubMed]

Laurinen, P. I.

T. L. Peromaa, P. I. Laurinen, “Separation of edge detection and brightness perception,” Vision Res. 44, 1919–1925 (2004).
[CrossRef] [PubMed]

MacEvoy, S. P.

S. P. MacEvoy, W. Kim, M. A. Paradiso, “Integration of surface information in primary visual cortex,” Nat. Neurosci. 1, 616–620 (1998).
[CrossRef]

Maddess, T.

M. P. Davey, T. Maddess, M. V. Srinivasan, “The spatiotemporal properties of the Craik–O’Brien–Cornsweet effect are consistent with ‘filling-in’,” Vision Res. 38, 2037–2046 (1998).
[CrossRef] [PubMed]

Majaj, N. J.

N. J. Majaj, D. G. Pelli, P. Kurshan, M. Palomares, “The role of spatial frequency channels in letter identification,” Vision Res. 42, 1165–1184 (2002).
[CrossRef] [PubMed]

Mignolla, E.

L. Pessoa, E. Mignolla, H. Neumann, “A contrast- and luminance-driven multiscale network model of brightness perception,” Vision Res. 35, 2201–2223 (1995).
[CrossRef] [PubMed]

Morgan, M. J.

R. J. Watt, M. J. Morgan, “A theory of the primitive spatial code in human vision,” Vision Res. 25, 1661–1674 (1985).
[CrossRef] [PubMed]

Morrone, M. C.

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221–245 (1988).
[CrossRef]

Moulden, B.

F. Kingdom, B. Moulden, “A multi-channel approach to brightness coding,” Vision Res. 32, 1565–1582 (1992).
[CrossRef] [PubMed]

Nakayma, K.

M. A. Paradiso, K. Nakayma, “Brightness perception and filling-in,” Vision Res. 31, 1221–1236 (1991).
[CrossRef] [PubMed]

Neumann, H.

L. Pessoa, E. Mignolla, H. Neumann, “A contrast- and luminance-driven multiscale network model of brightness perception,” Vision Res. 35, 2201–2223 (1995).
[CrossRef] [PubMed]

Palomares, M.

N. J. Majaj, D. G. Pelli, P. Kurshan, M. Palomares, “The role of spatial frequency channels in letter identification,” Vision Res. 42, 1165–1184 (2002).
[CrossRef] [PubMed]

Paradiso, M. A.

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

S. P. MacEvoy, W. Kim, M. A. Paradiso, “Integration of surface information in primary visual cortex,” Nat. Neurosci. 1, 616–620 (1998).
[CrossRef]

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

M. A. Paradiso, K. Nakayma, “Brightness perception and filling-in,” Vision Res. 31, 1221–1236 (1991).
[CrossRef] [PubMed]

Parish, D. H.

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise and the efficiency of letter identification,” Vision Res. 31, 1399–1415 (1991).
[CrossRef]

Pelli, D. G.

N. J. Majaj, D. G. Pelli, P. Kurshan, M. Palomares, “The role of spatial frequency channels in letter identification,” Vision Res. 42, 1165–1184 (2002).
[CrossRef] [PubMed]

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

Peromaa, T. L.

T. L. Peromaa, P. I. Laurinen, “Separation of edge detection and brightness perception,” Vision Res. 44, 1919–1925 (2004).
[CrossRef] [PubMed]

Pessoa, L.

L. Pessoa, “Mach-band attenuation by adjacent stimuli: experiment and filling-in simulations,” Perception 25, 452–442 (1996).
[CrossRef]

L. Pessoa, E. Mignolla, H. Neumann, “A contrast- and luminance-driven multiscale network model of brightness perception,” Vision Res. 35, 2201–2223 (1995).
[CrossRef] [PubMed]

Ramsden, B. M.

C. P. Hung, B. M. Ramsden, L. M. Chen, A. W. Roe, “Building surfaces from borders in areas 17 and 18 of the cat,” Vision Res. 41, 1389–1407 (2001).
[CrossRef] [PubMed]

Rittenhouse, C. D.

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

Robson, J. G.

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of the retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517–552 (1966).

Roe, A. W.

C. P. Hung, B. M. Ramsden, L. M. Chen, A. W. Roe, “Building surfaces from borders in areas 17 and 18 of the cat,” Vision Res. 41, 1389–1407 (2001).
[CrossRef] [PubMed]

Rossi, A. F.

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

Shapley, R.

R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research Vol. 3, N. Osborne and G. Chader, eds. (Pergamon, 1984), pp. 263–346.
[CrossRef]

Solomon, J. A.

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

Sperling, G.

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise and the efficiency of letter identification,” Vision Res. 31, 1399–1415 (1991).
[CrossRef]

Srinivasan, M. V.

M. P. Davey, T. Maddess, M. V. Srinivasan, “The spatiotemporal properties of the Craik–O’Brien–Cornsweet effect are consistent with ‘filling-in’,” Vision Res. 38, 2037–2046 (1998).
[CrossRef] [PubMed]

Thorell, L. G.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef]

Todorovic, D.

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

Vendrik, A. J.

H. J. Gerrits, A. J. Vendrik, “Simultaneous contrast, filling-in process and information processing in man’s visual system,” Exp. Brain Res. 11, 411–430 (1970).
[CrossRef] [PubMed]

Watt, R. J.

R. J. Watt, M. J. Morgan, “A theory of the primitive spatial code in human vision,” Vision Res. 25, 1661–1674 (1985).
[CrossRef] [PubMed]

Whittle, P.

P. Whittle, P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vision Res. 23, 1095–1110 (1969).
[CrossRef]

Wichmann, F. A.

F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001b).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001a).
[CrossRef]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Yund, E. W.

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef]

Exp. Brain Res. (1)

H. J. Gerrits, A. J. Vendrik, “Simultaneous contrast, filling-in process and information processing in man’s visual system,” Exp. Brain Res. 11, 411–430 (1970).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

J. Neurosci. (1)

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

J. Physiol. (London) (3)

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of the retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517–552 (1966).

Nat. Neurosci. (1)

S. P. MacEvoy, W. Kim, M. A. Paradiso, “Integration of surface information in primary visual cortex,” Nat. Neurosci. 1, 616–620 (1998).
[CrossRef]

Nature (London) (1)

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

Percept. Psychophys. (3)

F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001a).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001b).
[CrossRef]

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

Perception (1)

L. Pessoa, “Mach-band attenuation by adjacent stimuli: experiment and filling-in simulations,” Perception 25, 452–442 (1996).
[CrossRef]

Proc. R. Soc. London, Ser. B (1)

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221–245 (1988).
[CrossRef]

Science (1)

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

Vision Res. (13)

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef]

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef]

M. A. Paradiso, K. Nakayma, “Brightness perception and filling-in,” Vision Res. 31, 1221–1236 (1991).
[CrossRef] [PubMed]

L. Pessoa, E. Mignolla, H. Neumann, “A contrast- and luminance-driven multiscale network model of brightness perception,” Vision Res. 35, 2201–2223 (1995).
[CrossRef] [PubMed]

C. P. Hung, B. M. Ramsden, L. M. Chen, A. W. Roe, “Building surfaces from borders in areas 17 and 18 of the cat,” Vision Res. 41, 1389–1407 (2001).
[CrossRef] [PubMed]

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

M. P. Davey, T. Maddess, M. V. Srinivasan, “The spatiotemporal properties of the Craik–O’Brien–Cornsweet effect are consistent with ‘filling-in’,” Vision Res. 38, 2037–2046 (1998).
[CrossRef] [PubMed]

R. J. Watt, M. J. Morgan, “A theory of the primitive spatial code in human vision,” Vision Res. 25, 1661–1674 (1985).
[CrossRef] [PubMed]

F. Kingdom, B. Moulden, “A multi-channel approach to brightness coding,” Vision Res. 32, 1565–1582 (1992).
[CrossRef] [PubMed]

N. J. Majaj, D. G. Pelli, P. Kurshan, M. Palomares, “The role of spatial frequency channels in letter identification,” Vision Res. 42, 1165–1184 (2002).
[CrossRef] [PubMed]

T. L. Peromaa, P. I. Laurinen, “Separation of edge detection and brightness perception,” Vision Res. 44, 1919–1925 (2004).
[CrossRef] [PubMed]

P. Whittle, P. D. C. Challands, “The effect of background luminance on the brightness of flashes,” Vision Res. 23, 1095–1110 (1969).
[CrossRef]

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise and the efficiency of letter identification,” Vision Res. 31, 1399–1415 (1991).
[CrossRef]

Other (1)

R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research Vol. 3, N. Osborne and G. Chader, eds. (Pergamon, 1984), pp. 263–346.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the masking effect. The center spatial frequency of the noise mask increases from left to right. The four different stimulus types are presented in each row. It can be seen that only the middle frequency noise masks the stimulus. (If the effect of noise masks is not visible, try different viewing distances.)

Fig. 2
Fig. 2

Unmasked contrast thresholds. The stimulus width is presented on the abscissa and the contrast thresholds on the ordinate. The gray diamonds are unmasked thresholds for polarity identification and the solid squares, for orientation identification. The open circles in the upper graph are thresholds for polarity identification of a circular stimulus. Thresholds decrease as the stimulus size increases, but the unmasked thresholds for orientation and polarity identification are similar.

Fig. 3
Fig. 3

The masking tuning functions for identification of patch orientation and brightness polarity. The center spatial frequency of the noise mask is presented on the abscissa and the contrast thresholds on the ordinate (note that the scale varies). Data points correspond to 75% thresholds calculated from the psychometric functions, and the curves are Gaussians fitted to the data. The gray diamonds (dashed curves) are thresholds and fits for polarity identification; the solid squares (and solid curves) are for orientation identification. The straight horizontal lines are unmasked thresholds. The dotted curves are filter responses (scaled response of Gabor filter at the center of the stimulus). Stimulus size (a) 0.2 deg × 0.6 deg , (b) 0.8 deg × 2.5 deg , (c) 3.3 deg × 10.0 deg .

Fig. 4
Fig. 4

Masking tuning functions for identification of brightness polarity of a circular luminance patch. The center spatial frequency of the noise mask is presented on the abscissa and the contrast thresholds on the ordinate. The gray diamonds are contrast thresholds for polarity identification and the solid curves are Gaussians fitted to the data. The straight horizontal lines are unmasked thresholds. The dotted curves are filter responses. Stimulus size (a) 0.2 deg , (b) 3.3 deg , (c) 10.0 deg .

Fig. 5
Fig. 5

Peak masking spatial frequency as a function of stimulus size. The stimulus width is presented on the abscissa and the peak masking spatial frequency on the ordinate. The error bars are the widths of the tuning functions (full-width at half-height). The gray diamonds (dashed curves) are peak masking frequencies for polarity identification and the solid squares (solid curves) for orientation identification. The dotted curves are filter responses. The dashed–dotted curve in the upper graph corresponds to the peak masking frequencies for the ideal observer.

Fig. 6
Fig. 6

The results of the control experiment. The center spatial frequency of the noise mask is presented on the abscissa and the contrast thresholds on the ordinate. Data points correspond to 75% thresholds calculated from the psychometric functions and the curves are Gaussians fitted to the data. The gray diamonds are the thresholds from the main experiment and the solid squares are the thresholds from the control experiment. (a) Brightness polarity identification, (b) orientation identification.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( f ) = a e ( ( f f ¯ ) 2 s 2 ) + c

Metrics