Abstract

The context in which a pattern is viewed can greatly affect its apparent contrast, a phenomenon commonly attributed to pooled contrast gain control processes. A low-contrast surround may slightly enhance apparent contrast, whereas increasing the contrast of the surround leads to a monotonic decline in contrast appearance. We ask here how the presence of a patterned surround affects the ability to perform fine, suprathreshold orientation, contrast, and spatial frequency discriminations as a function of surround contrast and phase. Our results revealed an unexpected dip in performance when center and surround were in phase and similar in contrast. These results suggest that additional processes, perhaps those involved in scene segregation, play a role in contextual effects on discrimination.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Thomas, “Underlying psychometric function for detecting gratings and identifying spatial frequency,” J. Opt. Soc. Am. 73, 751–758 (1983).
    [CrossRef] [PubMed]
  2. D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
    [PubMed]
  3. D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).
  4. D. G. Albrecht, W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991).
    [CrossRef]
  5. D. J. Heeger, “Half-squaring in responses of cat striate cells,” Visual Neurosci. 9, 427–443 (1992).
    [CrossRef]
  6. J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
    [CrossRef]
  7. R. L. DeValois, K. K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, 1990).
  8. N. v.S. Graham, Visual Pattern Analyzers, Vol. 16 of Oxford Psychology Series (Oxford U. Press, 1989), pp. xvi, 646.
  9. L. A. Olzak, J. P. Thomas, “Seeing spatial patterns,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, and J. Thomas, eds. (Wiley, 1986).
  10. J. D. Allison, V. A. Casagrande, A. B. Bonds, “The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate,” Visual Neurosci. 12, 309–320 (1995).
    [CrossRef]
  11. L. A. Bauman, A. B. Bonds, “Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex,” Vision Res. 31, 933–944 (1991).
    [CrossRef] [PubMed]
  12. A. B. Bonds, “Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex,” Visual Neurosci. 2, 41–55 (1989).
    [CrossRef]
  13. A. B. Bonds, “Temporal dynamics of contrast gain in single cells of the cat striate cortex,” Visual Neurosci. 6, 239–255 (1991).
    [CrossRef]
  14. D. Burr, C. Morrone, L. Maffei, “Intra-cortical inhibition prevents simple cells from responding to textured visual patterns,” Exp. Brain Res. 43, 455–458 (1981).
    [PubMed]
  15. D. C. Burr, J. Ross, M. C. Morrone, “Local regulation of luminance gain,” Vision Res. 25, 717–727 (1985).
    [CrossRef] [PubMed]
  16. G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
    [PubMed]
  17. G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994).
    [PubMed]
  18. G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
    [PubMed]
  19. E. J. DeBruyn, Y. A. Gajewski, A. B. Bonds, “Anticholinesterase agents affect contrast gain of the cat cortical visual evoked potential,” Neurosci. Lett. 71, 311–316 (1986).
    [CrossRef] [PubMed]
  20. E. J. DeBruyn, A. B. Bonds, “Contrast adaptation in cat visual cortex is not mediated by GABA,” Brain Res. 383, 339–342 (1986).
    [CrossRef] [PubMed]
  21. J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999).
    [CrossRef]
  22. M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990).
    [PubMed]
  23. J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997).
    [CrossRef] [PubMed]
  24. B. Pfleger, A. B. Bonds, “Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex,” Exp. Brain Res. 104, 81–88 (1995).
    [CrossRef] [PubMed]
  25. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
    [PubMed]
  26. Y. Sugita, K. Mimura, “Cortical modulation of visual contrast,” Psychol. Res. 53, 271–273 (1991).
    [CrossRef] [PubMed]
  27. D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
    [CrossRef] [PubMed]
  28. G. A. Walker, I. Ohzawa, R. D. Freeman, “Asymmetric suppression outside the classical receptive field of the visual cortex,” J. Neurosci. 19, 10536–10553 (1999).
    [PubMed]
  29. G. A. Walker, I. Ohzawa, R. D. Freeman, “Suppression outside the classical cortical receptive field,” Visual Neurosci. 17, 369–379 (2000).
    [CrossRef]
  30. D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared, linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
    [PubMed]
  31. M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
    [CrossRef] [PubMed]
  32. M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
    [CrossRef] [PubMed]
  33. M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
    [CrossRef] [PubMed]
  34. M. D’Zmura, B. Singer, “Spatial pooling of contrast in contrast gain control,” J. Opt. Soc. Am. A 13, 2135–2140 (1996).
    [CrossRef]
  35. Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
    [CrossRef] [PubMed]
  36. L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
    [CrossRef] [PubMed]
  37. J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
    [CrossRef] [PubMed]
  38. Y. Bonneh, D. Sagi, “Effects of spatial configuration on contrast detection,” Vision Res. 38, 3541–3553 (1998).
    [CrossRef]
  39. A. W. Freeman, D. R. Badcock, “Visual sensitivity in the presence of a patterned background,” J. Opt. Soc. Am. A 16, 979–986 (1999).
    [CrossRef]
  40. R. J. Snowden, S. T. Hammett, “The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
    [CrossRef] [PubMed]
  41. J. A. Solomon, M. J. Morgan, “Facilitation from collinear flanks is cancelled by non-collinear flanks,” Vision Res. 40, 279–286 (2000).
    [CrossRef] [PubMed]
  42. T. S. Meese, D. J. Holmes, “Adaptation and gain pool summation: alternative models and masking data,” Vision Res. 42, 1113–1125 (2002).
    [CrossRef] [PubMed]
  43. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
    [CrossRef]
  44. J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
    [CrossRef]
  45. U. Polat, “Functional architecture of long-range perceptual interactions,” Spatial Vis. 12, 143–162 (1999).
    [CrossRef]
  46. U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
    [CrossRef] [PubMed]
  47. U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
    [CrossRef] [PubMed]
  48. U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
    [CrossRef] [PubMed]
  49. I. Mareschal, J. Andrew Henrie, R. M. Shapley, “A psychophysical correlate of contrast dependent changes in receptive field properties,” Vision Res. 42, 1879–1887 (2002).
    [CrossRef] [PubMed]
  50. I. Mareschal, M. P. Sceniak, R. M. Shapley, “Contextual influences on orientation discrimination: binding local and global cues,” Vision Res. 41, 1915–1930 (2001).
    [CrossRef] [PubMed]
  51. I. Mareschal, R. M. Shapley, “Effects of contrast and size on orientation discrimination,” Vision Res. 44, 57–67 (2004).
    [CrossRef]
  52. J. Xing, D. J. Heeger, “Measurement and modeling of center-surround suppression and enhancement,” Vision Res. 41, 571–583 (2001).
    [CrossRef] [PubMed]
  53. L. A. Olzak, J. P. Thomas, “When orthogonal orientations are not processed independently,” Vision Res. 31, 51–57 (1991).
    [CrossRef] [PubMed]
  54. L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1898 (1992).
    [CrossRef] [PubMed]
  55. L. A. Olzak, J. P. Thomas, “Dual nonlinearities regulate contrast sensitivity in pattern discrimination tasks,” Vision Res. 43, 1433–1442 (2003).
    [CrossRef] [PubMed]
  56. J. P. Thomas, L. A. Olzak, “Spatial phase sensitivity of mechanisms mediating discrimination of small orientation differences,” J. Opt. Soc. Am. A 18, 2197–2203 (2001).
    [CrossRef]
  57. C. C. Chen, C. W. Tyler, “Lateral sensitivity modulation explains the flanker effect in contrast discrimination,” Proc. R. Soc. London, Ser. B 268, 509–516 (2001).
    [CrossRef]
  58. C. Yu, S. A. Klein, D. M. Levi, “Cross- and iso-oriented surrounds modulate the contrast response function: the effect of surround contrast,” J. Vision 3, 527–540 (2003).
    [CrossRef]
  59. C. Yu, D. M. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
    [CrossRef] [PubMed]
  60. B. Zenger-Landolt, C. Koch, “Flanker effects in peripheral contrast discrimination—psychophysics and modeling,” Vision Res. 41, 3663–3675 (2001).
    [CrossRef] [PubMed]
  61. S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449–461 (1990).
    [CrossRef] [PubMed]
  62. B. G. Smith, J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713–724 (1989).
    [CrossRef] [PubMed]
  63. A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
    [CrossRef]
  64. J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
    [CrossRef]
  65. L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast–contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
    [CrossRef]
  66. C. Chubb, L. Olzak, A. Derrington, “Second-order processes in vision: introduction,” J. Opt. Soc. Am. A 18, 2175–2178 (2001).
    [CrossRef]
  67. J. M. Samonds, A. B. Bonds, “From another angle: differences in cortical coding between fine and coarse discrimination of orientation,” J. Neurophysiol. 91, 1193–1202 (2004).
    [CrossRef]

2004 (2)

I. Mareschal, R. M. Shapley, “Effects of contrast and size on orientation discrimination,” Vision Res. 44, 57–67 (2004).
[CrossRef]

J. M. Samonds, A. B. Bonds, “From another angle: differences in cortical coding between fine and coarse discrimination of orientation,” J. Neurophysiol. 91, 1193–1202 (2004).
[CrossRef]

2003 (2)

L. A. Olzak, J. P. Thomas, “Dual nonlinearities regulate contrast sensitivity in pattern discrimination tasks,” Vision Res. 43, 1433–1442 (2003).
[CrossRef] [PubMed]

C. Yu, S. A. Klein, D. M. Levi, “Cross- and iso-oriented surrounds modulate the contrast response function: the effect of surround contrast,” J. Vision 3, 527–540 (2003).
[CrossRef]

2002 (2)

T. S. Meese, D. J. Holmes, “Adaptation and gain pool summation: alternative models and masking data,” Vision Res. 42, 1113–1125 (2002).
[CrossRef] [PubMed]

I. Mareschal, J. Andrew Henrie, R. M. Shapley, “A psychophysical correlate of contrast dependent changes in receptive field properties,” Vision Res. 42, 1879–1887 (2002).
[CrossRef] [PubMed]

2001 (6)

I. Mareschal, M. P. Sceniak, R. M. Shapley, “Contextual influences on orientation discrimination: binding local and global cues,” Vision Res. 41, 1915–1930 (2001).
[CrossRef] [PubMed]

J. Xing, D. J. Heeger, “Measurement and modeling of center-surround suppression and enhancement,” Vision Res. 41, 571–583 (2001).
[CrossRef] [PubMed]

C. C. Chen, C. W. Tyler, “Lateral sensitivity modulation explains the flanker effect in contrast discrimination,” Proc. R. Soc. London, Ser. B 268, 509–516 (2001).
[CrossRef]

B. Zenger-Landolt, C. Koch, “Flanker effects in peripheral contrast discrimination—psychophysics and modeling,” Vision Res. 41, 3663–3675 (2001).
[CrossRef] [PubMed]

C. Chubb, L. Olzak, A. Derrington, “Second-order processes in vision: introduction,” J. Opt. Soc. Am. A 18, 2175–2178 (2001).
[CrossRef]

J. P. Thomas, L. A. Olzak, “Spatial phase sensitivity of mechanisms mediating discrimination of small orientation differences,” J. Opt. Soc. Am. A 18, 2197–2203 (2001).
[CrossRef]

2000 (3)

J. A. Solomon, M. J. Morgan, “Facilitation from collinear flanks is cancelled by non-collinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef] [PubMed]

C. Yu, D. M. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

G. A. Walker, I. Ohzawa, R. D. Freeman, “Suppression outside the classical cortical receptive field,” Visual Neurosci. 17, 369–379 (2000).
[CrossRef]

1999 (9)

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

U. Polat, “Functional architecture of long-range perceptual interactions,” Spatial Vis. 12, 143–162 (1999).
[CrossRef]

G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
[PubMed]

J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999).
[CrossRef]

G. A. Walker, I. Ohzawa, R. D. Freeman, “Asymmetric suppression outside the classical receptive field of the visual cortex,” J. Neurosci. 19, 10536–10553 (1999).
[PubMed]

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast–contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

A. W. Freeman, D. R. Badcock, “Visual sensitivity in the presence of a patterned background,” J. Opt. Soc. Am. A 16, 979–986 (1999).
[CrossRef]

1998 (3)

R. J. Snowden, S. T. Hammett, “The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Y. Bonneh, D. Sagi, “Effects of spatial configuration on contrast detection,” Vision Res. 38, 3541–3553 (1998).
[CrossRef]

1997 (2)

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
[CrossRef]

1996 (3)

M. D’Zmura, B. Singer, “Spatial pooling of contrast in contrast gain control,” J. Opt. Soc. Am. A 13, 2135–2140 (1996).
[CrossRef]

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

1995 (2)

B. Pfleger, A. B. Bonds, “Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex,” Exp. Brain Res. 104, 81–88 (1995).
[CrossRef] [PubMed]

J. D. Allison, V. A. Casagrande, A. B. Bonds, “The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate,” Visual Neurosci. 12, 309–320 (1995).
[CrossRef]

1994 (2)

G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994).
[PubMed]

J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
[CrossRef]

1993 (4)

D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared, linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
[PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

1992 (3)

D. J. Heeger, “Half-squaring in responses of cat striate cells,” Visual Neurosci. 9, 427–443 (1992).
[CrossRef]

G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
[PubMed]

L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1898 (1992).
[CrossRef] [PubMed]

1991 (6)

L. A. Olzak, J. P. Thomas, “When orthogonal orientations are not processed independently,” Vision Res. 31, 51–57 (1991).
[CrossRef] [PubMed]

L. A. Bauman, A. B. Bonds, “Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex,” Vision Res. 31, 933–944 (1991).
[CrossRef] [PubMed]

A. B. Bonds, “Temporal dynamics of contrast gain in single cells of the cat striate cortex,” Visual Neurosci. 6, 239–255 (1991).
[CrossRef]

Y. Sugita, K. Mimura, “Cortical modulation of visual contrast,” Psychol. Res. 53, 271–273 (1991).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

D. G. Albrecht, W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991).
[CrossRef]

1990 (2)

M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990).
[PubMed]

S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449–461 (1990).
[CrossRef] [PubMed]

1989 (2)

B. G. Smith, J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713–724 (1989).
[CrossRef] [PubMed]

A. B. Bonds, “Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex,” Visual Neurosci. 2, 41–55 (1989).
[CrossRef]

1987 (1)

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

1986 (3)

E. J. DeBruyn, Y. A. Gajewski, A. B. Bonds, “Anticholinesterase agents affect contrast gain of the cat cortical visual evoked potential,” Neurosci. Lett. 71, 311–316 (1986).
[CrossRef] [PubMed]

E. J. DeBruyn, A. B. Bonds, “Contrast adaptation in cat visual cortex is not mediated by GABA,” Brain Res. 383, 339–342 (1986).
[CrossRef] [PubMed]

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

1985 (2)

D. C. Burr, J. Ross, M. C. Morrone, “Local regulation of luminance gain,” Vision Res. 25, 717–727 (1985).
[CrossRef] [PubMed]

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

1984 (1)

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

1983 (1)

1982 (1)

D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
[PubMed]

1981 (1)

D. Burr, C. Morrone, L. Maffei, “Intra-cortical inhibition prevents simple cells from responding to textured visual patterns,” Exp. Brain Res. 43, 455–458 (1981).
[PubMed]

1978 (1)

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

Ahumada, A. J.

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Albrecht, D. G.

D. G. Albrecht, W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991).
[CrossRef]

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
[PubMed]

Allison, J. D.

J. D. Allison, V. A. Casagrande, A. B. Bonds, “The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate,” Visual Neurosci. 12, 309–320 (1995).
[CrossRef]

Anzai, A.

J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999).
[CrossRef]

Badcock, D. R.

Barfield, L. P.

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

Bauman, L. A.

L. A. Bauman, A. B. Bonds, “Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex,” Vision Res. 31, 933–944 (1991).
[CrossRef] [PubMed]

Bilson, A.

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Bonds, A. B.

J. M. Samonds, A. B. Bonds, “From another angle: differences in cortical coding between fine and coarse discrimination of orientation,” J. Neurophysiol. 91, 1193–1202 (2004).
[CrossRef]

B. Pfleger, A. B. Bonds, “Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex,” Exp. Brain Res. 104, 81–88 (1995).
[CrossRef] [PubMed]

J. D. Allison, V. A. Casagrande, A. B. Bonds, “The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate,” Visual Neurosci. 12, 309–320 (1995).
[CrossRef]

L. A. Bauman, A. B. Bonds, “Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex,” Vision Res. 31, 933–944 (1991).
[CrossRef] [PubMed]

A. B. Bonds, “Temporal dynamics of contrast gain in single cells of the cat striate cortex,” Visual Neurosci. 6, 239–255 (1991).
[CrossRef]

A. B. Bonds, “Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex,” Visual Neurosci. 2, 41–55 (1989).
[CrossRef]

E. J. DeBruyn, A. B. Bonds, “Contrast adaptation in cat visual cortex is not mediated by GABA,” Brain Res. 383, 339–342 (1986).
[CrossRef] [PubMed]

E. J. DeBruyn, Y. A. Gajewski, A. B. Bonds, “Anticholinesterase agents affect contrast gain of the cat cortical visual evoked potential,” Neurosci. Lett. 71, 311–316 (1986).
[CrossRef] [PubMed]

Bonneh, Y.

Y. Bonneh, D. Sagi, “Effects of spatial configuration on contrast detection,” Vision Res. 38, 3541–3553 (1998).
[CrossRef]

Bowne, S. F.

S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449–461 (1990).
[CrossRef] [PubMed]

Bradley, A.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

Burr, D.

D. Burr, C. Morrone, L. Maffei, “Intra-cortical inhibition prevents simple cells from responding to textured visual patterns,” Exp. Brain Res. 43, 455–458 (1981).
[PubMed]

Burr, D. C.

D. C. Burr, J. Ross, M. C. Morrone, “Local regulation of luminance gain,” Vision Res. 25, 717–727 (1985).
[CrossRef] [PubMed]

Cannon, M. W.

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

Casagrande, V. A.

J. D. Allison, V. A. Casagrande, A. B. Bonds, “The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate,” Visual Neurosci. 12, 309–320 (1995).
[CrossRef]

Chen, C. C.

C. C. Chen, C. W. Tyler, “Lateral sensitivity modulation explains the flanker effect in contrast discrimination,” Proc. R. Soc. London, Ser. B 268, 509–516 (2001).
[CrossRef]

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

Chubb, C.

C. Chubb, L. Olzak, A. Derrington, “Second-order processes in vision: introduction,” J. Opt. Soc. Am. A 18, 2175–2178 (2001).
[CrossRef]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

D’Zmura, M.

DeAngelis, G. C.

G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
[PubMed]

G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994).
[PubMed]

G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
[PubMed]

DeBruyn, E. J.

E. J. DeBruyn, A. B. Bonds, “Contrast adaptation in cat visual cortex is not mediated by GABA,” Brain Res. 383, 339–342 (1986).
[CrossRef] [PubMed]

E. J. DeBruyn, Y. A. Gajewski, A. B. Bonds, “Anticholinesterase agents affect contrast gain of the cat cortical visual evoked potential,” Neurosci. Lett. 71, 311–316 (1986).
[CrossRef] [PubMed]

Derrington, A.

DeValois, K. K.

R. L. DeValois, K. K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, 1990).

DeValois, R. L.

R. L. DeValois, K. K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, 1990).

Ejima, Y.

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

Farrar, S. B.

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

Fitzhugh, A.

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Foley, J. M.

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
[CrossRef]

Freeman, A. W.

Freeman, R. D.

G. A. Walker, I. Ohzawa, R. D. Freeman, “Suppression outside the classical cortical receptive field,” Visual Neurosci. 17, 369–379 (2000).
[CrossRef]

G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
[PubMed]

J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999).
[CrossRef]

G. A. Walker, I. Ohzawa, R. D. Freeman, “Asymmetric suppression outside the classical receptive field of the visual cortex,” J. Neurosci. 19, 10536–10553 (1999).
[PubMed]

G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994).
[PubMed]

G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
[PubMed]

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

Fullenkamp, S. C.

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

Gajewski, Y. A.

E. J. DeBruyn, Y. A. Gajewski, A. B. Bonds, “Anticholinesterase agents affect contrast gain of the cat cortical visual evoked potential,” Neurosci. Lett. 71, 311–316 (1986).
[CrossRef] [PubMed]

Gardner, J. L.

J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999).
[CrossRef]

Geisler, W. S.

D. G. Albrecht, W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991).
[CrossRef]

Ghose, G. M.

G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
[PubMed]

Gizzi, M. S.

M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990).
[PubMed]

Graham, N. v.S.

N. v.S. Graham, Visual Pattern Analyzers, Vol. 16 of Oxford Psychology Series (Oxford U. Press, 1989), pp. xvi, 646.

Hamilton, D. B.

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
[PubMed]

Hammett, S. T.

R. J. Snowden, S. T. Hammett, “The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

Heeger, D. J.

J. Xing, D. J. Heeger, “Measurement and modeling of center-surround suppression and enhancement,” Vision Res. 41, 571–583 (2001).
[CrossRef] [PubMed]

D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared, linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
[PubMed]

D. J. Heeger, “Half-squaring in responses of cat striate cells,” Visual Neurosci. 9, 427–443 (1992).
[CrossRef]

Henrie, J. Andrew

I. Mareschal, J. Andrew Henrie, R. M. Shapley, “A psychophysical correlate of contrast dependent changes in receptive field properties,” Vision Res. 42, 1879–1887 (2002).
[CrossRef] [PubMed]

Holmes, D. J.

T. S. Meese, D. J. Holmes, “Adaptation and gain pool summation: alternative models and masking data,” Vision Res. 42, 1113–1125 (2002).
[CrossRef] [PubMed]

Kasamatsu, T.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Katz, E.

M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990).
[PubMed]

Klein, S. A.

C. Yu, S. A. Klein, D. M. Levi, “Cross- and iso-oriented surrounds modulate the contrast response function: the effect of surround contrast,” J. Vision 3, 527–540 (2003).
[CrossRef]

Koch, C.

B. Zenger-Landolt, C. Koch, “Flanker effects in peripheral contrast discrimination—psychophysics and modeling,” Vision Res. 41, 3663–3675 (2001).
[CrossRef] [PubMed]

Laurinen, P. I.

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast–contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

Levi, D. M.

C. Yu, S. A. Klein, D. M. Levi, “Cross- and iso-oriented surrounds modulate the contrast response function: the effect of surround contrast,” J. Vision 3, 527–540 (2003).
[CrossRef]

C. Yu, D. M. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

Levitt, J. B.

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997).
[CrossRef] [PubMed]

Lund, J. S.

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997).
[CrossRef] [PubMed]

Maffei, L.

D. Burr, C. Morrone, L. Maffei, “Intra-cortical inhibition prevents simple cells from responding to textured visual patterns,” Exp. Brain Res. 43, 455–458 (1981).
[PubMed]

Mareschal, I.

I. Mareschal, R. M. Shapley, “Effects of contrast and size on orientation discrimination,” Vision Res. 44, 57–67 (2004).
[CrossRef]

I. Mareschal, J. Andrew Henrie, R. M. Shapley, “A psychophysical correlate of contrast dependent changes in receptive field properties,” Vision Res. 42, 1879–1887 (2002).
[CrossRef] [PubMed]

I. Mareschal, M. P. Sceniak, R. M. Shapley, “Contextual influences on orientation discrimination: binding local and global cues,” Vision Res. 41, 1915–1930 (2001).
[CrossRef] [PubMed]

Meese, T. S.

T. S. Meese, D. J. Holmes, “Adaptation and gain pool summation: alternative models and masking data,” Vision Res. 42, 1113–1125 (2002).
[CrossRef] [PubMed]

Mimura, K.

Y. Sugita, K. Mimura, “Cortical modulation of visual contrast,” Psychol. Res. 53, 271–273 (1991).
[CrossRef] [PubMed]

Mizobe, K.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Morgan, M. J.

J. A. Solomon, M. J. Morgan, “Facilitation from collinear flanks is cancelled by non-collinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef] [PubMed]

Morrone, C.

D. Burr, C. Morrone, L. Maffei, “Intra-cortical inhibition prevents simple cells from responding to textured visual patterns,” Exp. Brain Res. 43, 455–458 (1981).
[PubMed]

Morrone, M. C.

D. C. Burr, J. Ross, M. C. Morrone, “Local regulation of luminance gain,” Vision Res. 25, 717–727 (1985).
[CrossRef] [PubMed]

Movshon, J. A.

M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990).
[PubMed]

Nguyen, K.

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Nielsen, K. R.

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Norcia, A. M.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

Ohzawa, I.

G. A. Walker, I. Ohzawa, R. D. Freeman, “Suppression outside the classical cortical receptive field,” Visual Neurosci. 17, 369–379 (2000).
[CrossRef]

G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
[PubMed]

J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999).
[CrossRef]

G. A. Walker, I. Ohzawa, R. D. Freeman, “Asymmetric suppression outside the classical receptive field of the visual cortex,” J. Neurosci. 19, 10536–10553 (1999).
[PubMed]

G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994).
[PubMed]

G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
[PubMed]

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

Olzak, L.

Olzak, L. A.

L. A. Olzak, J. P. Thomas, “Dual nonlinearities regulate contrast sensitivity in pattern discrimination tasks,” Vision Res. 43, 1433–1442 (2003).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, “Spatial phase sensitivity of mechanisms mediating discrimination of small orientation differences,” J. Opt. Soc. Am. A 18, 2197–2203 (2001).
[CrossRef]

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast–contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
[CrossRef]

L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1898 (1992).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “When orthogonal orientations are not processed independently,” Vision Res. 31, 51–57 (1991).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Seeing spatial patterns,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, and J. Thomas, eds. (Wiley, 1986).

Pettet, M. W.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Pfleger, B.

B. Pfleger, A. B. Bonds, “Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex,” Exp. Brain Res. 104, 81–88 (1995).
[CrossRef] [PubMed]

Poirson, A.

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Polat, U.

U. Polat, “Functional architecture of long-range perceptual interactions,” Spatial Vis. 12, 143–162 (1999).
[CrossRef]

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Robson, J. G.

G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
[PubMed]

Ross, J.

D. C. Burr, J. Ross, M. C. Morrone, “Local regulation of luminance gain,” Vision Res. 25, 717–727 (1985).
[CrossRef] [PubMed]

Sagi, D.

Y. Bonneh, D. Sagi, “Effects of spatial configuration on contrast detection,” Vision Res. 38, 3541–3553 (1998).
[CrossRef]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Samonds, J. M.

J. M. Samonds, A. B. Bonds, “From another angle: differences in cortical coding between fine and coarse discrimination of orientation,” J. Neurophysiol. 91, 1193–1202 (2004).
[CrossRef]

Sceniak, M. P.

I. Mareschal, M. P. Sceniak, R. M. Shapley, “Contextual influences on orientation discrimination: binding local and global cues,” Vision Res. 41, 1915–1930 (2001).
[CrossRef] [PubMed]

Schumer, R. A.

M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990).
[PubMed]

Sclar, G.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

Shapley, R. M.

I. Mareschal, R. M. Shapley, “Effects of contrast and size on orientation discrimination,” Vision Res. 44, 57–67 (2004).
[CrossRef]

I. Mareschal, J. Andrew Henrie, R. M. Shapley, “A psychophysical correlate of contrast dependent changes in receptive field properties,” Vision Res. 42, 1879–1887 (2002).
[CrossRef] [PubMed]

I. Mareschal, M. P. Sceniak, R. M. Shapley, “Contextual influences on orientation discrimination: binding local and global cues,” Vision Res. 41, 1915–1930 (2001).
[CrossRef] [PubMed]

Singer, B.

Skottun, B. C.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

Smith, B. G.

Snowden, R. J.

R. J. Snowden, S. T. Hammett, “The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

Solomon, J. A.

J. A. Solomon, M. J. Morgan, “Facilitation from collinear flanks is cancelled by non-collinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

Sperling, G.

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

Sugita, Y.

Y. Sugita, K. Mimura, “Cortical modulation of visual contrast,” Psychol. Res. 53, 271–273 (1991).
[CrossRef] [PubMed]

Takahashi, S.

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

Thomas, J. P.

L. A. Olzak, J. P. Thomas, “Dual nonlinearities regulate contrast sensitivity in pattern discrimination tasks,” Vision Res. 43, 1433–1442 (2003).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, “Spatial phase sensitivity of mechanisms mediating discrimination of small orientation differences,” J. Opt. Soc. Am. A 18, 2197–2203 (2001).
[CrossRef]

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
[CrossRef]

L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1898 (1992).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “When orthogonal orientations are not processed independently,” Vision Res. 31, 51–57 (1991).
[CrossRef] [PubMed]

B. G. Smith, J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713–724 (1989).
[CrossRef] [PubMed]

J. P. Thomas, “Underlying psychometric function for detecting gratings and identifying spatial frequency,” J. Opt. Soc. Am. 73, 751–758 (1983).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Seeing spatial patterns,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, and J. Thomas, eds. (Wiley, 1986).

Tolhurst, D. J.

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

Tyler, C. W.

C. C. Chen, C. W. Tyler, “Lateral sensitivity modulation explains the flanker effect in contrast discrimination,” Proc. R. Soc. London, Ser. B 268, 509–516 (2001).
[CrossRef]

Walker, G. A.

G. A. Walker, I. Ohzawa, R. D. Freeman, “Suppression outside the classical cortical receptive field,” Visual Neurosci. 17, 369–379 (2000).
[CrossRef]

G. A. Walker, I. Ohzawa, R. D. Freeman, “Asymmetric suppression outside the classical receptive field of the visual cortex,” J. Neurosci. 19, 10536–10553 (1999).
[PubMed]

Watson, A. B.

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Xing, J.

J. Xing, D. J. Heeger, “Measurement and modeling of center-surround suppression and enhancement,” Vision Res. 41, 571–583 (2001).
[CrossRef] [PubMed]

Yu, C.

C. Yu, S. A. Klein, D. M. Levi, “Cross- and iso-oriented surrounds modulate the contrast response function: the effect of surround contrast,” J. Vision 3, 527–540 (2003).
[CrossRef]

C. Yu, D. M. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

Zenger-Landolt, B.

B. Zenger-Landolt, C. Koch, “Flanker effects in peripheral contrast discrimination—psychophysics and modeling,” Vision Res. 41, 3663–3675 (2001).
[CrossRef] [PubMed]

Behav. Res. Methods Instrum. Comput. (1)

A. B. Watson, K. R. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” special issue on computers in vision research, Behav. Res. Methods Instrum. Comput. 18, 587–594 (1986).
[CrossRef]

Brain Res. (1)

E. J. DeBruyn, A. B. Bonds, “Contrast adaptation in cat visual cortex is not mediated by GABA,” Brain Res. 383, 339–342 (1986).
[CrossRef] [PubMed]

Exp. Brain Res. (2)

D. Burr, C. Morrone, L. Maffei, “Intra-cortical inhibition prevents simple cells from responding to textured visual patterns,” Exp. Brain Res. 43, 455–458 (1981).
[PubMed]

B. Pfleger, A. B. Bonds, “Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex,” Exp. Brain Res. 104, 81–88 (1995).
[CrossRef] [PubMed]

J. Neurophysiol. (7)

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
[PubMed]

G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994).
[PubMed]

M. S. Gizzi, E. Katz, R. A. Schumer, J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,” J. Neurophysiol. 63, 1529–1543 (1990).
[PubMed]

D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared, linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
[PubMed]

D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
[PubMed]

J. M. Samonds, A. B. Bonds, “From another angle: differences in cortical coding between fine and coarse discrimination of orientation,” J. Neurophysiol. 91, 1193–1202 (2004).
[CrossRef]

J. Neurosci. (2)

G. A. Walker, I. Ohzawa, R. D. Freeman, “Asymmetric suppression outside the classical receptive field of the visual cortex,” J. Neurosci. 19, 10536–10553 (1999).
[PubMed]

G. C. DeAngelis, G. M. Ghose, I. Ohzawa, R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (1)

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

J. Vision (1)

C. Yu, S. A. Klein, D. M. Levi, “Cross- and iso-oriented surrounds modulate the contrast response function: the effect of surround contrast,” J. Vision 3, 527–540 (2003).
[CrossRef]

Nat. Neurosci. (1)

C. Yu, D. M. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

Nature (2)

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997).
[CrossRef] [PubMed]

Neurosci. Lett. (1)

E. J. DeBruyn, Y. A. Gajewski, A. B. Bonds, “Anticholinesterase agents affect contrast gain of the cat cortical visual evoked potential,” Neurosci. Lett. 71, 311–316 (1986).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

C. C. Chen, C. W. Tyler, “Lateral sensitivity modulation explains the flanker effect in contrast discrimination,” Proc. R. Soc. London, Ser. B 268, 509–516 (2001).
[CrossRef]

Psychol. Res. (1)

Y. Sugita, K. Mimura, “Cortical modulation of visual contrast,” Psychol. Res. 53, 271–273 (1991).
[CrossRef] [PubMed]

Spatial Vis. (1)

U. Polat, “Functional architecture of long-range perceptual interactions,” Spatial Vis. 12, 143–162 (1999).
[CrossRef]

Vision Res. (27)

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast–contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

B. Zenger-Landolt, C. Koch, “Flanker effects in peripheral contrast discrimination—psychophysics and modeling,” Vision Res. 41, 3663–3675 (2001).
[CrossRef] [PubMed]

S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449–461 (1990).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

I. Mareschal, J. Andrew Henrie, R. M. Shapley, “A psychophysical correlate of contrast dependent changes in receptive field properties,” Vision Res. 42, 1879–1887 (2002).
[CrossRef] [PubMed]

I. Mareschal, M. P. Sceniak, R. M. Shapley, “Contextual influences on orientation discrimination: binding local and global cues,” Vision Res. 41, 1915–1930 (2001).
[CrossRef] [PubMed]

I. Mareschal, R. M. Shapley, “Effects of contrast and size on orientation discrimination,” Vision Res. 44, 57–67 (2004).
[CrossRef]

J. Xing, D. J. Heeger, “Measurement and modeling of center-surround suppression and enhancement,” Vision Res. 41, 571–583 (2001).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “When orthogonal orientations are not processed independently,” Vision Res. 31, 51–57 (1991).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1898 (1992).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Dual nonlinearities regulate contrast sensitivity in pattern discrimination tasks,” Vision Res. 43, 1433–1442 (2003).
[CrossRef] [PubMed]

R. J. Snowden, S. T. Hammett, “The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

J. A. Solomon, M. J. Morgan, “Facilitation from collinear flanks is cancelled by non-collinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef] [PubMed]

T. S. Meese, D. J. Holmes, “Adaptation and gain pool summation: alternative models and masking data,” Vision Res. 42, 1113–1125 (2002).
[CrossRef] [PubMed]

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

D. C. Burr, J. Ross, M. C. Morrone, “Local regulation of luminance gain,” Vision Res. 25, 717–727 (1985).
[CrossRef] [PubMed]

L. A. Bauman, A. B. Bonds, “Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex,” Vision Res. 31, 933–944 (1991).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

Y. Bonneh, D. Sagi, “Effects of spatial configuration on contrast detection,” Vision Res. 38, 3541–3553 (1998).
[CrossRef]

J. M. Foley, C. C. Chen, “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model,” Vision Res. 39, 3855–3872 (1999).
[CrossRef]

Visual Neurosci. (7)

D. G. Albrecht, W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991).
[CrossRef]

D. J. Heeger, “Half-squaring in responses of cat striate cells,” Visual Neurosci. 9, 427–443 (1992).
[CrossRef]

G. A. Walker, I. Ohzawa, R. D. Freeman, “Suppression outside the classical cortical receptive field,” Visual Neurosci. 17, 369–379 (2000).
[CrossRef]

A. B. Bonds, “Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex,” Visual Neurosci. 2, 41–55 (1989).
[CrossRef]

A. B. Bonds, “Temporal dynamics of contrast gain in single cells of the cat striate cortex,” Visual Neurosci. 6, 239–255 (1991).
[CrossRef]

J. L. Gardner, A. Anzai, I. Ohzawa, R. D. Freeman, “Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex,” Visual Neurosci. 16, 1115–1121 (1999).
[CrossRef]

J. D. Allison, V. A. Casagrande, A. B. Bonds, “The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate,” Visual Neurosci. 12, 309–320 (1995).
[CrossRef]

Other (3)

R. L. DeValois, K. K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, 1990).

N. v.S. Graham, Visual Pattern Analyzers, Vol. 16 of Oxford Psychology Series (Oxford U. Press, 1989), pp. xvi, 646.

L. A. Olzak, J. P. Thomas, “Seeing spatial patterns,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, and J. Thomas, eds. (Wiley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Predicted relative d for discrimination performance as a function of surround contrast.

Fig. 2
Fig. 2

Examples of stimuli used in the experiments. Note that the centers are slightly different either in spatial frequency or orientation from the surround. This difference has been greatly exaggerated for the figure, and therefore apparent contours or phase shifts are visible here but not in the actual experiment. Examples are for spatial frequency judgments. Only one of the pair to be discriminated is shown in each case. (a) Control pattern with unmodulated surround. (b) Same as (a) but with an example of a lower-contrast surround. (c) Same as (a) but with same-contrast surround. (d) Same as (a) but with an example of a higher-contrast surround.

Fig. 3
Fig. 3

Contrast discrimination performance as a function of surround contrast. Arrows indicate the fixed 0.1 test contrast level (mean contrast for contrast discriminations). Different panels represent different observers.

Fig. 4
Fig. 4

Same as Fig. 3 but for orientation judgments.

Fig. 5
Fig. 5

Same as Fig. 3 but for spatial frequency judgments.

Fig. 6
Fig. 6

Contrast discrimination as a function of surround contrast in the control condition. Note that the test contrast is now at 0.05. In-phase judgments only.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R t = k ( 1 + W e C s p e ) ( S t C t p ) ( 1 + a C t q + W i C s q i ) ,
D = R t A R t B ,
d = D ( A ) D ( B ) σ .

Metrics