Abstract

Single-cell recordings from macaque visual cortex have shown orientation-selective neurons in area in V2 code for border ownership [J. Neurosci. 20, 6594 (2000) ]: Each piece of contrast border is represented by two pools of neurons whose relative firing rate indicates the side of border ownership. Here we show that the human visual cortex uses a similar coding scheme by demonstrating a border-ownership-contingent tilt aftereffect. The aftereffect was specific for the adapted location, indicating that the adapted neurons have small receptive fields. We conclude that figure–ground organization is represented by border-ownership-selective neurons at early stages in the human visual cortex.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Rubin, Visuell wahrgenommene Figuren (Gyldendal, 1921). For translation see Ref. [2].
  2. E. Rubin, “Visuell wahrgenommene figuren,” in Visual Perception: Essential Readings, S. Yantis, ed. (Psychology Press, 2001).
  3. M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923). For translation see Ref. [4].
    [CrossRef]
  4. M. Wertheimer, “Laws of organization in perceptual forms,” in Visual Perception: Essential Readings, S. Yantis, ed. (Psychology Press, 2001).
  5. K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace & World, 1935).
  6. G. Kanizsa, Organization in Vision. Essays on Gestalt Perception (Praeger, 1979).
  7. J. Harris, “Gestalt theory,” in The Oxford Companion to the Mind, R. L. Gregory, ed. (Oxford U. Press, 1987).
  8. Border ownership is a term for the phenomenon that visual borders (e.g., a light–dark border produced by a step in luminance) tend to be perceived as the boundary of a region, that is, each border appears to be “owned” by the region on one side, the “figure,” while the region on the other side is relegated to the “ground” that does not have a visible border and whose form is thus not defined. Theoretically, assigning border ownership and labeling regions according to the depth order of surfaces are just two different ways of coding the occlusion structure in images of 3D scenes.
  9. K. Nakayama, S. Shimojo, G. H. Silverman, “Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects,” Perception 18, 55–68 (1989).
    [CrossRef] [PubMed]
  10. Z. J. He, K. Nakayama, “Surfaces versus features in visual search,” Nature 359, 231–233 (1992).
    [CrossRef] [PubMed]
  11. J. Driver, G. C. Baylis, “Edge-assignment and figure-ground segmentation in short-term visual matching,” Cogn. Psychol. 31, 248–306 (1996).
    [CrossRef] [PubMed]
  12. H. Zhou, H. S. Friedman, R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594–6611 (2000).
    [PubMed]
  13. R. von der Heydt, H. Zhou, H. S. Friedman, “Neural coding of border ownership: implications for the theory of figure-ground perception,” in Perceptual Organization in Vision: Behavioral and Neural Perspectives, M. Behrmann, R. Kimchi, and C. R. Olson, eds. (Erlbaum, 2003).
  14. R. von der Heydt, “Image parsing mechanisms of the visual cortex,” in The Visual Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT Press, 2003).
  15. J. J. Gibson, M. Radner, “Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies,” J. Exp. Psychol. 20, 453–467 (1937).
    [CrossRef]
  16. J. J. Gibson, “Adaptation, after-effect and contrast in the perception of curved lines,” J. Exp. Psychol. 16, 1–31 (1933).
    [CrossRef]
  17. R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–465 (1967).
    [CrossRef] [PubMed]
  18. C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  19. K. K. De Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1065 (1977).
    [CrossRef] [PubMed]
  20. F. W. Campbell, L. Maffei, “The tilt after-effect: a fresh look,” Vision Res. 11, 833–840 (1971).
    [CrossRef] [PubMed]
  21. R. von der Heydt, P. Hänny, M. R. Dürsteler, “The role of orientation disparity in stereoscopic perception and the development of binocular correspondence,” in Sensory Functions, Vol. 16, E. Grastyán and P Molnár, eds. (Pergamon, 1982), pp. 461–470.
  22. A. Smith, R. Over, “Tilt aftereffects with subjective contours,” Nature 257, 581–582 (1975).
    [CrossRef] [PubMed]
  23. M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
    [CrossRef] [PubMed]
  24. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  25. D. Regan, K. I. Beverley, “Postadaptation orientation discrimination” J. Opt. Soc. Am. A 2, 147–155 (1985).
    [CrossRef] [PubMed]
  26. D. J. Finney, Probit Analysis (Cambridge U. Press, 1971).
  27. F. T. Qiu, R. von der Heydt, “Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules,” Neuron 47, 155–166 (2004).
    [CrossRef]
  28. K. Nakayama, S. Shimojo, V. S. Ramachandran, “Transparency: relation to depth, subjective contours, luminance and neon color spreading,” Perception 19, 497–513 (1990).
    [CrossRef]
  29. K. Nakayama, S. Shimojo, “Experiencing and perceiving visual surfaces,” Science 257, 1357–1363 (1992).
    [CrossRef] [PubMed]
  30. U. Neisser, Cognitive Psychology (Appleton-Century-Crofts, 1967).
  31. V. A.F. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605–1615 (1995).
    [PubMed]
  32. D. Regan, S. J. Hamstra, “Shape discrimination and the judgement of perfect symmetry—dissociation of shape from size,” Vision Res. 32, 1845–1864 (1992).
    [CrossRef] [PubMed]
  33. S. Suzuki, P. Cavanagh, “A shape-contrast effect for briefly presented stimuli,” J. Exp. Psychol. Hum. Percept. Perform. 24, 1315–1341 (1998).
    [CrossRef] [PubMed]
  34. R. Gattass, C. G. Gross, J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519–539 (1981).
    [CrossRef] [PubMed]
  35. R. Gattass, A. P.B. Sousa, C. G. Gross, “Visuotopic organization and extent of V3 and V4 of the macaque,” J. Neurosci. 8, 1831–1845 (1988).
    [PubMed]

2004 (1)

F. T. Qiu, R. von der Heydt, “Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules,” Neuron 47, 155–166 (2004).
[CrossRef]

2000 (1)

H. Zhou, H. S. Friedman, R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594–6611 (2000).
[PubMed]

1998 (1)

S. Suzuki, P. Cavanagh, “A shape-contrast effect for briefly presented stimuli,” J. Exp. Psychol. Hum. Percept. Perform. 24, 1315–1341 (1998).
[CrossRef] [PubMed]

1996 (1)

J. Driver, G. C. Baylis, “Edge-assignment and figure-ground segmentation in short-term visual matching,” Cogn. Psychol. 31, 248–306 (1996).
[CrossRef] [PubMed]

1995 (1)

V. A.F. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605–1615 (1995).
[PubMed]

1992 (3)

D. Regan, S. J. Hamstra, “Shape discrimination and the judgement of perfect symmetry—dissociation of shape from size,” Vision Res. 32, 1845–1864 (1992).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, “Experiencing and perceiving visual surfaces,” Science 257, 1357–1363 (1992).
[CrossRef] [PubMed]

Z. J. He, K. Nakayama, “Surfaces versus features in visual search,” Nature 359, 231–233 (1992).
[CrossRef] [PubMed]

1990 (1)

K. Nakayama, S. Shimojo, V. S. Ramachandran, “Transparency: relation to depth, subjective contours, luminance and neon color spreading,” Perception 19, 497–513 (1990).
[CrossRef]

1989 (2)

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, G. H. Silverman, “Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects,” Perception 18, 55–68 (1989).
[CrossRef] [PubMed]

1988 (1)

R. Gattass, A. P.B. Sousa, C. G. Gross, “Visuotopic organization and extent of V3 and V4 of the macaque,” J. Neurosci. 8, 1831–1845 (1988).
[PubMed]

1985 (1)

1981 (1)

R. Gattass, C. G. Gross, J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519–539 (1981).
[CrossRef] [PubMed]

1977 (1)

K. K. De Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1065 (1977).
[CrossRef] [PubMed]

1975 (1)

A. Smith, R. Over, “Tilt aftereffects with subjective contours,” Nature 257, 581–582 (1975).
[CrossRef] [PubMed]

1971 (1)

F. W. Campbell, L. Maffei, “The tilt after-effect: a fresh look,” Vision Res. 11, 833–840 (1971).
[CrossRef] [PubMed]

1969 (1)

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

1967 (1)

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–465 (1967).
[CrossRef] [PubMed]

1962 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

1937 (1)

J. J. Gibson, M. Radner, “Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

1933 (1)

J. J. Gibson, “Adaptation, after-effect and contrast in the perception of curved lines,” J. Exp. Psychol. 16, 1–31 (1933).
[CrossRef]

1923 (1)

M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923). For translation see Ref. [4].
[CrossRef]

Baylis, G. C.

J. Driver, G. C. Baylis, “Edge-assignment and figure-ground segmentation in short-term visual matching,” Cogn. Psychol. 31, 248–306 (1996).
[CrossRef] [PubMed]

Beverley, K. I.

Blakemore, C.

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Campbell, F. W.

F. W. Campbell, L. Maffei, “The tilt after-effect: a fresh look,” Vision Res. 11, 833–840 (1971).
[CrossRef] [PubMed]

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Cavanagh, P.

S. Suzuki, P. Cavanagh, “A shape-contrast effect for briefly presented stimuli,” J. Exp. Psychol. Hum. Percept. Perform. 24, 1315–1341 (1998).
[CrossRef] [PubMed]

De Valois, K. K.

K. K. De Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1065 (1977).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–465 (1967).
[CrossRef] [PubMed]

Driver, J.

J. Driver, G. C. Baylis, “Edge-assignment and figure-ground segmentation in short-term visual matching,” Cogn. Psychol. 31, 248–306 (1996).
[CrossRef] [PubMed]

Dürsteler, M. R.

R. von der Heydt, P. Hänny, M. R. Dürsteler, “The role of orientation disparity in stereoscopic perception and the development of binocular correspondence,” in Sensory Functions, Vol. 16, E. Grastyán and P Molnár, eds. (Pergamon, 1982), pp. 461–470.

Finney, D. J.

D. J. Finney, Probit Analysis (Cambridge U. Press, 1971).

Friedman, H. S.

H. Zhou, H. S. Friedman, R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594–6611 (2000).
[PubMed]

R. von der Heydt, H. Zhou, H. S. Friedman, “Neural coding of border ownership: implications for the theory of figure-ground perception,” in Perceptual Organization in Vision: Behavioral and Neural Perspectives, M. Behrmann, R. Kimchi, and C. R. Olson, eds. (Erlbaum, 2003).

Gattass, R.

R. Gattass, A. P.B. Sousa, C. G. Gross, “Visuotopic organization and extent of V3 and V4 of the macaque,” J. Neurosci. 8, 1831–1845 (1988).
[PubMed]

R. Gattass, C. G. Gross, J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519–539 (1981).
[CrossRef] [PubMed]

Gibson, J. J.

J. J. Gibson, M. Radner, “Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

J. J. Gibson, “Adaptation, after-effect and contrast in the perception of curved lines,” J. Exp. Psychol. 16, 1–31 (1933).
[CrossRef]

Gross, C. G.

R. Gattass, A. P.B. Sousa, C. G. Gross, “Visuotopic organization and extent of V3 and V4 of the macaque,” J. Neurosci. 8, 1831–1845 (1988).
[PubMed]

R. Gattass, C. G. Gross, J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519–539 (1981).
[CrossRef] [PubMed]

Hamstra, S. J.

D. Regan, S. J. Hamstra, “Shape discrimination and the judgement of perfect symmetry—dissociation of shape from size,” Vision Res. 32, 1845–1864 (1992).
[CrossRef] [PubMed]

Hänny, P.

R. von der Heydt, P. Hänny, M. R. Dürsteler, “The role of orientation disparity in stereoscopic perception and the development of binocular correspondence,” in Sensory Functions, Vol. 16, E. Grastyán and P Molnár, eds. (Pergamon, 1982), pp. 461–470.

Harris, J.

J. Harris, “Gestalt theory,” in The Oxford Companion to the Mind, R. L. Gregory, ed. (Oxford U. Press, 1987).

He, Z. J.

Z. J. He, K. Nakayama, “Surfaces versus features in visual search,” Nature 359, 231–233 (1992).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Kanizsa, G.

G. Kanizsa, Organization in Vision. Essays on Gestalt Perception (Praeger, 1979).

Koffka, K.

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace & World, 1935).

Lamme, V. A.F.

V. A.F. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605–1615 (1995).
[PubMed]

Maffei, L.

F. W. Campbell, L. Maffei, “The tilt after-effect: a fresh look,” Vision Res. 11, 833–840 (1971).
[CrossRef] [PubMed]

Nakayama, K.

Z. J. He, K. Nakayama, “Surfaces versus features in visual search,” Nature 359, 231–233 (1992).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, “Experiencing and perceiving visual surfaces,” Science 257, 1357–1363 (1992).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, V. S. Ramachandran, “Transparency: relation to depth, subjective contours, luminance and neon color spreading,” Perception 19, 497–513 (1990).
[CrossRef]

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, G. H. Silverman, “Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects,” Perception 18, 55–68 (1989).
[CrossRef] [PubMed]

Neisser, U.

U. Neisser, Cognitive Psychology (Appleton-Century-Crofts, 1967).

Over, R.

A. Smith, R. Over, “Tilt aftereffects with subjective contours,” Nature 257, 581–582 (1975).
[CrossRef] [PubMed]

Paradiso, M. A.

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

Qiu, F. T.

F. T. Qiu, R. von der Heydt, “Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules,” Neuron 47, 155–166 (2004).
[CrossRef]

Radner, M.

J. J. Gibson, M. Radner, “Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

Ramachandran, V. S.

K. Nakayama, S. Shimojo, V. S. Ramachandran, “Transparency: relation to depth, subjective contours, luminance and neon color spreading,” Perception 19, 497–513 (1990).
[CrossRef]

Regan, D.

D. Regan, S. J. Hamstra, “Shape discrimination and the judgement of perfect symmetry—dissociation of shape from size,” Vision Res. 32, 1845–1864 (1992).
[CrossRef] [PubMed]

D. Regan, K. I. Beverley, “Postadaptation orientation discrimination” J. Opt. Soc. Am. A 2, 147–155 (1985).
[CrossRef] [PubMed]

Rubin, E.

E. Rubin, Visuell wahrgenommene Figuren (Gyldendal, 1921). For translation see Ref. [2].

E. Rubin, “Visuell wahrgenommene figuren,” in Visual Perception: Essential Readings, S. Yantis, ed. (Psychology Press, 2001).

Sandell, J. H.

R. Gattass, C. G. Gross, J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519–539 (1981).
[CrossRef] [PubMed]

Shimojo, S.

K. Nakayama, S. Shimojo, “Experiencing and perceiving visual surfaces,” Science 257, 1357–1363 (1992).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, V. S. Ramachandran, “Transparency: relation to depth, subjective contours, luminance and neon color spreading,” Perception 19, 497–513 (1990).
[CrossRef]

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, G. H. Silverman, “Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects,” Perception 18, 55–68 (1989).
[CrossRef] [PubMed]

Silverman, G. H.

K. Nakayama, S. Shimojo, G. H. Silverman, “Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects,” Perception 18, 55–68 (1989).
[CrossRef] [PubMed]

Smith, A.

A. Smith, R. Over, “Tilt aftereffects with subjective contours,” Nature 257, 581–582 (1975).
[CrossRef] [PubMed]

Sousa, A. P.B.

R. Gattass, A. P.B. Sousa, C. G. Gross, “Visuotopic organization and extent of V3 and V4 of the macaque,” J. Neurosci. 8, 1831–1845 (1988).
[PubMed]

Suzuki, S.

S. Suzuki, P. Cavanagh, “A shape-contrast effect for briefly presented stimuli,” J. Exp. Psychol. Hum. Percept. Perform. 24, 1315–1341 (1998).
[CrossRef] [PubMed]

von der Heydt, R.

F. T. Qiu, R. von der Heydt, “Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules,” Neuron 47, 155–166 (2004).
[CrossRef]

H. Zhou, H. S. Friedman, R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594–6611 (2000).
[PubMed]

R. von der Heydt, H. Zhou, H. S. Friedman, “Neural coding of border ownership: implications for the theory of figure-ground perception,” in Perceptual Organization in Vision: Behavioral and Neural Perspectives, M. Behrmann, R. Kimchi, and C. R. Olson, eds. (Erlbaum, 2003).

R. von der Heydt, P. Hänny, M. R. Dürsteler, “The role of orientation disparity in stereoscopic perception and the development of binocular correspondence,” in Sensory Functions, Vol. 16, E. Grastyán and P Molnár, eds. (Pergamon, 1982), pp. 461–470.

R. von der Heydt, “Image parsing mechanisms of the visual cortex,” in The Visual Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT Press, 2003).

Walraven, J.

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–465 (1967).
[CrossRef] [PubMed]

Wertheimer, M.

M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923). For translation see Ref. [4].
[CrossRef]

M. Wertheimer, “Laws of organization in perceptual forms,” in Visual Perception: Essential Readings, S. Yantis, ed. (Psychology Press, 2001).

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Zhou, H.

H. Zhou, H. S. Friedman, R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594–6611 (2000).
[PubMed]

R. von der Heydt, H. Zhou, H. S. Friedman, “Neural coding of border ownership: implications for the theory of figure-ground perception,” in Perceptual Organization in Vision: Behavioral and Neural Perspectives, M. Behrmann, R. Kimchi, and C. R. Olson, eds. (Erlbaum, 2003).

Cogn. Psychol. (1)

J. Driver, G. C. Baylis, “Edge-assignment and figure-ground segmentation in short-term visual matching,” Cogn. Psychol. 31, 248–306 (1996).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

R. Gattass, C. G. Gross, J. H. Sandell, “Visual topography of V2 in the macaque,” J. Comp. Neurol. 201, 519–539 (1981).
[CrossRef] [PubMed]

J. Exp. Psychol. (2)

J. J. Gibson, M. Radner, “Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

J. J. Gibson, “Adaptation, after-effect and contrast in the perception of curved lines,” J. Exp. Psychol. 16, 1–31 (1933).
[CrossRef]

J. Exp. Psychol. Hum. Percept. Perform. (1)

S. Suzuki, P. Cavanagh, “A shape-contrast effect for briefly presented stimuli,” J. Exp. Psychol. Hum. Percept. Perform. 24, 1315–1341 (1998).
[CrossRef] [PubMed]

J. Neurosci. (3)

R. Gattass, A. P.B. Sousa, C. G. Gross, “Visuotopic organization and extent of V3 and V4 of the macaque,” J. Neurosci. 8, 1831–1845 (1988).
[PubMed]

V. A.F. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605–1615 (1995).
[PubMed]

H. Zhou, H. S. Friedman, R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594–6611 (2000).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (2)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Nature (2)

Z. J. He, K. Nakayama, “Surfaces versus features in visual search,” Nature 359, 231–233 (1992).
[CrossRef] [PubMed]

A. Smith, R. Over, “Tilt aftereffects with subjective contours,” Nature 257, 581–582 (1975).
[CrossRef] [PubMed]

Neuron (1)

F. T. Qiu, R. von der Heydt, “Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules,” Neuron 47, 155–166 (2004).
[CrossRef]

Perception (2)

K. Nakayama, S. Shimojo, V. S. Ramachandran, “Transparency: relation to depth, subjective contours, luminance and neon color spreading,” Perception 19, 497–513 (1990).
[CrossRef]

K. Nakayama, S. Shimojo, G. H. Silverman, “Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects,” Perception 18, 55–68 (1989).
[CrossRef] [PubMed]

Psychol. Forsch. (1)

M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923). For translation see Ref. [4].
[CrossRef]

Science (2)

K. Nakayama, S. Shimojo, “Experiencing and perceiving visual surfaces,” Science 257, 1357–1363 (1992).
[CrossRef] [PubMed]

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–465 (1967).
[CrossRef] [PubMed]

Vision Res. (4)

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

D. Regan, S. J. Hamstra, “Shape discrimination and the judgement of perfect symmetry—dissociation of shape from size,” Vision Res. 32, 1845–1864 (1992).
[CrossRef] [PubMed]

K. K. De Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1065 (1977).
[CrossRef] [PubMed]

F. W. Campbell, L. Maffei, “The tilt after-effect: a fresh look,” Vision Res. 11, 833–840 (1971).
[CrossRef] [PubMed]

Other (12)

R. von der Heydt, P. Hänny, M. R. Dürsteler, “The role of orientation disparity in stereoscopic perception and the development of binocular correspondence,” in Sensory Functions, Vol. 16, E. Grastyán and P Molnár, eds. (Pergamon, 1982), pp. 461–470.

R. von der Heydt, H. Zhou, H. S. Friedman, “Neural coding of border ownership: implications for the theory of figure-ground perception,” in Perceptual Organization in Vision: Behavioral and Neural Perspectives, M. Behrmann, R. Kimchi, and C. R. Olson, eds. (Erlbaum, 2003).

R. von der Heydt, “Image parsing mechanisms of the visual cortex,” in The Visual Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT Press, 2003).

M. Wertheimer, “Laws of organization in perceptual forms,” in Visual Perception: Essential Readings, S. Yantis, ed. (Psychology Press, 2001).

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace & World, 1935).

G. Kanizsa, Organization in Vision. Essays on Gestalt Perception (Praeger, 1979).

J. Harris, “Gestalt theory,” in The Oxford Companion to the Mind, R. L. Gregory, ed. (Oxford U. Press, 1987).

Border ownership is a term for the phenomenon that visual borders (e.g., a light–dark border produced by a step in luminance) tend to be perceived as the boundary of a region, that is, each border appears to be “owned” by the region on one side, the “figure,” while the region on the other side is relegated to the “ground” that does not have a visible border and whose form is thus not defined. Theoretically, assigning border ownership and labeling regions according to the depth order of surfaces are just two different ways of coding the occlusion structure in images of 3D scenes.

E. Rubin, Visuell wahrgenommene Figuren (Gyldendal, 1921). For translation see Ref. [2].

E. Rubin, “Visuell wahrgenommene figuren,” in Visual Perception: Essential Readings, S. Yantis, ed. (Psychology Press, 2001).

D. J. Finney, Probit Analysis (Cambridge U. Press, 1971).

U. Neisser, Cognitive Psychology (Appleton-Century-Crofts, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Gibson’s tilt aftereffect. After inspecting a tilted line for approximately 1 min (adaptation), a vertical test line appears slightly tilted in the direction opposite to the adapting tilt.

Fig. 2
Fig. 2

Plausible mechanism of the tilt aftereffect and the hypothesis of border-ownership coding. (a) The test line excites orientation-selective cortical neurons that are tuned to a range of orientations near the vertical. The ellipse indicates the receptive field of such a neuron. Although the vertically tuned cells are activated the most, tilt is detected by comparing the activity between two pools of cells tuned to orientations left and right of vertical, as shown by the bell-shaped tuning curves. Dashed line indicates the stimulus orientation; arrows indicate the corresponding activity in the two pools of cells. The comparator circuit is shown at the bottom. For vertical orientation, the activities are in balance, and the difference signal is zero. (b) Top: After adaptation with tilt in the positive direction, the activity of the corresponding cells is reduced (black triangle). Therefore the same vertical test line now produces different levels of activity (arrows). Hence the comparator circuit gives a negative signal (negative aftereffect). (b) Bottom: To restore the balance, the test line has to be tilted slightly to the side of the adapting tilt, as indicated by the shift of the dashed line. (c) Top: Single-cell recordings from macaque visual cortex indicate that each contour segment is represented by two pools of neurons, one for each side of border ownership: a vertical line that is a contour of a figure to the left preferentially excites one pool, and a vertical line that is a contour of a figure to the right excites preferentially the other pool (excitation is indicated by shading of the receptive field). (c) Bottom: Because border ownership selectively activates one of the two pools, tilt adaptation produces aftereffects that are specific for the side of border ownership. If the two pools are adapted with opposite tilts (black triangles), opposite tilt aftereffects are obtained depending on the ownership of the test line.

Fig. 3
Fig. 3

Adaptation and test figures used in experiment 1. For adaptation, two trapezoids were presented alternatingly. F.P., fixation point. Perception of tilt was measured for an isolated line and for right and left flanks of a square. We refer to this flank or line as the test line. It was tilted randomly by angles between 3 and + 3 , and subjects indicated the direction of tilt (method of constant stimuli). Left and right test figure locations were randomly intermixed.

Fig. 4
Fig. 4

Demonstration of concurrent tilt aftereffects of opposite direction for the two sides of border ownership. Psychometric functions for one subject. The proportion of tilt responses is plotted as a function of the tilt of the test line for the two test figure locations (which were presented in random order). Solid circles and solid curves, preadaptation responses; crosses and dashed curves, postadaptation responses. The adaptation produced a rightward shift of the psychometric function when the test figure was located on the left and a leftward shift when the test figure was located on the right.

Fig. 5
Fig. 5

Summary of border-ownership-contingent tilt aftereffects. The plots show concurrent aftereffects, as determined from the shifts of the psychometric functions. Left, results from one subject for single line and two locations of test figure. Right, results for the two test figure locations from all 12 subjects tested ( N = 12 ) . Lines connect data points of same subject.

Fig. 6
Fig. 6

Localization of the border-ownership-contingent tilt aftereffect in the visual field. One location was adapted as in experiment 1, but three locations, displaced along the horizontal, were tested, as shown at the top (dashed lines indicate the two directions of the test figure). Solid circles show the absolute strength of the border-ownership-contingent tilt aftereffects for the three positions of test line. Curves are Gaussian functions fitted to the data points. Data are from eight subjects. The after- effect falls off with distance from the adapted position.

Fig. 7
Fig. 7

Similar experiment as in Fig. 6, but with vertical displacement. In this case, small (1.5 deg) adaptation and test figures were used to avoid overlap between adaptation and test figures in the displaced conditions.

Metrics