Abstract

Coloration and figural properties of neon color spreading and the watercolor illusion are studied using phenomenal and psychophysical observations. Coloration properties of both effects can be reduced to a common limiting condition, a nearby color transition called the two-dot limiting case, which clarifies their perceptual similarities and dissimilarities. The results are explained by the FACADE neural model of biological vision. The model proposes how local properties of color transitions activate spatial competition among nearby perceptual boundaries, with boundaries of lower-contrast edges weakened by competition more than boundaries of higher-contrast edges. This asymmetry induces spreading of more color across these boundaries than conversely. The model also predicts how depth and figure–ground effects are generated in these illusions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Thorell, L. G. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
    [CrossRef] [PubMed]
  2. M. Cohen, S. Grossberg, “Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance,” Percept. Psychophys. 36, 428–456 (1984).
    [CrossRef] [PubMed]
  3. S. Grossberg, E. Mingolla, “Neural dynamics of form perception. Boundary completion, illusory figures and neon color spreading,” Psychol. Rev. 92, 173–211 (1985).
    [CrossRef] [PubMed]
  4. S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
    [CrossRef] [PubMed]
  5. D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo,” Riv. di Psicol. 65, 101–128 (1971).
  6. P. Bressan, E. Mingolla, L. Spillmann, T. Watanabe, “Neon colour spreading: a review,” Perception 26, 1353–1366 (1997).
    [CrossRef]
  7. H. F.J.M. van Tuijl, “A new visual illusion: neon-like color spreading and complementary color induction between subjective contours,” Acta Psychol. 39, 441–445 (1975).
    [CrossRef]
  8. H. F.J.M. van Tuijl, C. M.M. de Weert, “Sensory conditions for the occurrence of the neon spreading illusion,” Perception 8, 211–215 (1979).
    [CrossRef] [PubMed]
  9. D. Katz, “Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung,” Z. Psychol., Ergänzungsbd 7, 6–31 (1911).
  10. D. Katz, Die Erscheinungsweisen der Farben, 2nd ed (1930)[translation into English: R. B. MacLeod, C. W. Fox and , The World of Color (Kegan Paul, 1935)].
  11. P. Bressan, “Revisitation of the luminance conditions for the occurrence of the achromatic neon color spreading illusion,” Percept. Psychophys. 54, 55–64 (1993).
    [CrossRef] [PubMed]
  12. K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, 1935).
  13. W. Metzger, Psychologie, Die Entwicklung ihrer Grundannahmen seit der Einführung des Experimentes, Zweite Auflage (Steinkopff, Darmstadt, 1954).
  14. F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
    [CrossRef] [PubMed]
  15. B. Pinna, “Un effetto di colorazione,” in Il laboratorio e la città. XXI Congresso degli Psicologi Italiani, V. Majer, M. Maeran, and M. Santinello, eds. (Edizioni SIPs, Società Italiana di Psiocologia, Milano, 1987), p. 158.
  16. B. Pinna, G. Brelstaff, L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vision Res. 41, 2669–2676 (2001).
    [CrossRef] [PubMed]
  17. B. Pinna, J. S. Werner, L. Spillmann, “The watercolor effect: a new principle of grouping and figure–ground organization” Vision Res. 43, 43–52 (2003).
    [CrossRef]
  18. L. Spillmann, B. Pinna, J. S. Werner, “Form-from-watercolour in perception and old maps,” in Seeing Spatial Form, M. R.M. Jenkin and L. R. Harris, eds. (Oxford U. Press) (to be published).
  19. B. Pinna, “The role of Gestalt principle of similarity in the watercolour illusion,” Spatial Vis. 21, 1–8 (2005).
  20. C. von Campenhausen, J. Schramme, “100 years of Benham’s top in colour science,” Perception 24, 695–717 (1995).
    [CrossRef]
  21. B. Pinna, “The neon color spreading and the watercolor illusion: phenomenal links and neural mechanisms,” in Variety of Complex Systems Behaviors, Proceedings of the Third National Conference on Systems Science, G. Minati and E. Pessa, eds. (Kluwer Academic, 2005).
  22. M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923).
    [CrossRef]
  23. E. Rubin, Synsoplevede Figurer (Glydendalske, 1915).
  24. E. Rubin, Visuell wahrgenommene Figuren (Gyldendalske Boghandel, 1921).
  25. C. Redies, L. Spillmann, “The neon color effect in the Ehrenstein illusion,” Perception 10, 667–681 (1981).
    [CrossRef]
  26. P. Bressan, “Neon color spreading with and without its figural prerequisites,” Perception 22, 353–361 (1993).
    [CrossRef]
  27. J. M. Kennedy, “Illusory contours and the ends of lines,” Perception 7, 605–607 (1978).
    [CrossRef] [PubMed]
  28. M. Sambin, “Adynamic model of anomalous figures,” in The Perception of Illusory Contours, S. Petry and G. E. Meyer, eds. (Springer, New York, 1987), pp 131–142.
    [CrossRef]
  29. T. F. Shipley, P. J. Kellman, “The role of discontinuities in the perception of subjective figures,” Percept. Psychophys. 48, 259–270 (1990).
    [CrossRef] [PubMed]
  30. C. Redies, L. Spillmann, K. Kunz, “Colored neon flanks and line gap enhancement,” Vision Res. 24, 1301–1309 (1984).
    [CrossRef]
  31. S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception: II: Binocular theory,” Percept. Psychophys. 41, 117–158 (1987).
    [CrossRef] [PubMed]
  32. S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
    [CrossRef] [PubMed]
  33. S. Grossberg, “Cortical dynamics of three-dimensional figure–ground perception of two-dimensional pictures,” Psychol. Rev. 104, 618–658 (1997).
    [CrossRef] [PubMed]
  34. S. Grossberg, “Outline of a theory of brightness, color, and form perception,” in Trends in Mathematical Psychology, E. Degreef and J. van Buggenhaut, eds. (North-Holland, 1984), pp. 59–86.
    [CrossRef]
  35. S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
    [CrossRef] [PubMed]
  36. S. Grossberg, “The complementary brain: unifying brain dynamics and modularity,” Trends Cogn. Sci. 4, 233–245 (2000).
    [CrossRef] [PubMed]
  37. S. Grossberg, “How does the cerebral cortex work? Learning, attention and grouping by the laminar circuits of visual cortex,” Spatial Vis. 12, 163–186 (1999).
    [CrossRef]
  38. S. Grossberg, E. Mingolla, W. D. Ross, “Visual brain and visual perception: How does the cortex do perceptual grouping?” Trends Neurosci. 20, 106–111 (1997).
    [CrossRef] [PubMed]
  39. S. Grossberg, R. D.S. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
    [CrossRef] [PubMed]
  40. R. D.S. Raizada, S. Grossberg, “Context-sensitive binding by the laminar circuits of V1 and V2: a unified model of perceptual grouping, attention, and orientation contrast,” Special Issue on Neural Binding of Space and Time, Visual Cogn. 8 (3/4/5), 431–466 (2001).
    [CrossRef]
  41. R. D.S. Raizada, S. Grossberg, “Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system,” Cereb. Cortex 13, 100–113 (2003).
    [CrossRef]
  42. S. Grossberg, “Contour enhancement, short term memory, and constancies in reverberating neural networks,” Stud. Appl. Math. 52, 217–257 (1973).Reprinted in S. Grossberg, Studies of Mind and Brain (Reidel, 1982).
    [CrossRef]
  43. S. Grossberg, “How does a brain build a cognitive code?” Psychol. Rev. 87, 1–51 (1980).
    [CrossRef] [PubMed]
  44. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
    [CrossRef]
  45. R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
    [CrossRef] [PubMed]
  46. Y. Cao, S. Grossberg and , “A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis,” Techn. Rep. CAS/CNS-TR-2004-007.Spatial Vis. (to be published).
  47. S. Grossberg, “How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex,” Behav. Cog. Neurosci. Rev. 2, 47–76 (2003).
    [CrossRef]
  48. S. Grossberg, P. A. Howe, “Laminar cortical model of stereopsis and three-dimensional surface perception,” Vision Res. 43, 801–829 (2003).
    [CrossRef] [PubMed]
  49. S. Grossberg, J. R. Williamson, “A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning,” Cereb. Cortex 11, 37–58 (2001).
    [CrossRef]
  50. S. Grossberg, A. Yazdanbakhsh, “Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading,” Vision Res. 45, 1725–1743 (2005).
    [CrossRef] [PubMed]
  51. S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception, I: Monocular theory,” Percept. Psychophys. 41, 87–116 (1987).
    [CrossRef] [PubMed]
  52. S. Grossberg, “A comment on ‘Assimilation of achromatic color cannot explain the brightness effect in the achromatic neon effect’ by M. K. Albert,” Perception 28, 1291–1302 (1999).
    [CrossRef]
  53. S. Grossberg, G. Swaminathan, “A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability,” Vision Res. 44, 1147–1187 (2004).
    [CrossRef] [PubMed]
  54. S. Grossberg, F. Kelly, “Neural dynamics of binocular brightness perception,” Vision Res. 39, 3796–3816 (1999).
    [CrossRef]
  55. S. Grossberg, N. P. McLoughlin, “Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images,” Neural Networks 10, 1583–1605 (1997).
    [CrossRef]
  56. S. Grossberg, L. Pessoa, “Texture segregation, surface representation and figure–ground separation,” Vision Res. 38, 1657–1684 (1998).
    [CrossRef]
  57. F. Kelly, S. Grossberg, “Neural dynamics of 3-D surface perception: figure–ground separation and lightness perception,” Percept. Psychophys. 62, 1596–1618 (2000).
    [CrossRef]
  58. N. P. McLoughlin, S. Grossberg, “Cortical computation of stereo disparity,” Vision Res. 38, 91–99 (1998).
    [CrossRef] [PubMed]
  59. S. Grossberg, E. Mingolla, “Neural dynamics of surface perception: boundary webs, illuminants, and shape-from-shading,” Comput. Vis. Graph. Image Process. 37, 116–165 (1987).
    [CrossRef]
  60. J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. Hum. Percept. Perform. 13, 242–255 (1987).
    [CrossRef] [PubMed]
  61. B. Julesz, R. A. Schumer, “Early visual perception,” Annu. Rev. Psychol. 32, 575–627 (1981).
    [CrossRef] [PubMed]
  62. J. J. Kulikowski, “Limit of single vision in stereopsis depends on contour sharpness,” Nature 275, 126–127 (1978).
    [CrossRef] [PubMed]
  63. W. A. Richards, M. G. Kaye, “Local versus global stereopsis: two mechanisms?” Vision Res. 14, 1345–1347 (1974).
    [CrossRef] [PubMed]
  64. C. M. Schor, C. W. Tyler, “Spatio-temporal properties of Panam’s fusional area,” Vision Res. 21, 683–692 (1981).
    [CrossRef]
  65. C. M. Schor, I. Wood, “Disparity range for local stereopsis as a function of luminance spatial frequency,” Vision Res. 23, 1649–1654 (1983).
    [CrossRef] [PubMed]
  66. C. M. Schor, I. Wood, J. Ogawa, “Binocular sensory fusion is limited by spatial resolution,” Vision Res. 24, 661–665 (1984).
    [CrossRef] [PubMed]
  67. C. W. Tyler, “Spatial organization of binocular disparity sensitivity,” Vision Res. 15, 583–590 (1975).
    [CrossRef] [PubMed]
  68. C. W. Tyler, “Sensory processing of binocular disparity,” in Basic and Clinical Aspects of Binocular Vergence Eye Movements, Schor and Ciuffreda, eds. (Butterworths, 1983), pp. 199–295.

2005 (3)

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
[CrossRef] [PubMed]

B. Pinna, “The role of Gestalt principle of similarity in the watercolour illusion,” Spatial Vis. 21, 1–8 (2005).

S. Grossberg, A. Yazdanbakhsh, “Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading,” Vision Res. 45, 1725–1743 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Grossberg, G. Swaminathan, “A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability,” Vision Res. 44, 1147–1187 (2004).
[CrossRef] [PubMed]

2003 (4)

S. Grossberg, “How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex,” Behav. Cog. Neurosci. Rev. 2, 47–76 (2003).
[CrossRef]

S. Grossberg, P. A. Howe, “Laminar cortical model of stereopsis and three-dimensional surface perception,” Vision Res. 43, 801–829 (2003).
[CrossRef] [PubMed]

B. Pinna, J. S. Werner, L. Spillmann, “The watercolor effect: a new principle of grouping and figure–ground organization” Vision Res. 43, 43–52 (2003).
[CrossRef]

R. D.S. Raizada, S. Grossberg, “Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system,” Cereb. Cortex 13, 100–113 (2003).
[CrossRef]

2001 (3)

R. D.S. Raizada, S. Grossberg, “Context-sensitive binding by the laminar circuits of V1 and V2: a unified model of perceptual grouping, attention, and orientation contrast,” Special Issue on Neural Binding of Space and Time, Visual Cogn. 8 (3/4/5), 431–466 (2001).
[CrossRef]

B. Pinna, G. Brelstaff, L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vision Res. 41, 2669–2676 (2001).
[CrossRef] [PubMed]

S. Grossberg, J. R. Williamson, “A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning,” Cereb. Cortex 11, 37–58 (2001).
[CrossRef]

2000 (3)

F. Kelly, S. Grossberg, “Neural dynamics of 3-D surface perception: figure–ground separation and lightness perception,” Percept. Psychophys. 62, 1596–1618 (2000).
[CrossRef]

S. Grossberg, R. D.S. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

S. Grossberg, “The complementary brain: unifying brain dynamics and modularity,” Trends Cogn. Sci. 4, 233–245 (2000).
[CrossRef] [PubMed]

1999 (3)

S. Grossberg, “How does the cerebral cortex work? Learning, attention and grouping by the laminar circuits of visual cortex,” Spatial Vis. 12, 163–186 (1999).
[CrossRef]

S. Grossberg, F. Kelly, “Neural dynamics of binocular brightness perception,” Vision Res. 39, 3796–3816 (1999).
[CrossRef]

S. Grossberg, “A comment on ‘Assimilation of achromatic color cannot explain the brightness effect in the achromatic neon effect’ by M. K. Albert,” Perception 28, 1291–1302 (1999).
[CrossRef]

1998 (2)

S. Grossberg, L. Pessoa, “Texture segregation, surface representation and figure–ground separation,” Vision Res. 38, 1657–1684 (1998).
[CrossRef]

N. P. McLoughlin, S. Grossberg, “Cortical computation of stereo disparity,” Vision Res. 38, 91–99 (1998).
[CrossRef] [PubMed]

1997 (4)

S. Grossberg, N. P. McLoughlin, “Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images,” Neural Networks 10, 1583–1605 (1997).
[CrossRef]

S. Grossberg, E. Mingolla, W. D. Ross, “Visual brain and visual perception: How does the cortex do perceptual grouping?” Trends Neurosci. 20, 106–111 (1997).
[CrossRef] [PubMed]

S. Grossberg, “Cortical dynamics of three-dimensional figure–ground perception of two-dimensional pictures,” Psychol. Rev. 104, 618–658 (1997).
[CrossRef] [PubMed]

P. Bressan, E. Mingolla, L. Spillmann, T. Watanabe, “Neon colour spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

1995 (2)

C. von Campenhausen, J. Schramme, “100 years of Benham’s top in colour science,” Perception 24, 695–717 (1995).
[CrossRef]

R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
[CrossRef] [PubMed]

1994 (1)

S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
[CrossRef] [PubMed]

1993 (2)

P. Bressan, “Neon color spreading with and without its figural prerequisites,” Perception 22, 353–361 (1993).
[CrossRef]

P. Bressan, “Revisitation of the luminance conditions for the occurrence of the achromatic neon color spreading illusion,” Percept. Psychophys. 54, 55–64 (1993).
[CrossRef] [PubMed]

1992 (1)

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
[CrossRef]

1990 (1)

T. F. Shipley, P. J. Kellman, “The role of discontinuities in the perception of subjective figures,” Percept. Psychophys. 48, 259–270 (1990).
[CrossRef] [PubMed]

1988 (1)

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

1987 (4)

S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception: II: Binocular theory,” Percept. Psychophys. 41, 117–158 (1987).
[CrossRef] [PubMed]

S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception, I: Monocular theory,” Percept. Psychophys. 41, 87–116 (1987).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of surface perception: boundary webs, illuminants, and shape-from-shading,” Comput. Vis. Graph. Image Process. 37, 116–165 (1987).
[CrossRef]

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. Hum. Percept. Perform. 13, 242–255 (1987).
[CrossRef] [PubMed]

1985 (2)

S. Grossberg, E. Mingolla, “Neural dynamics of form perception. Boundary completion, illusory figures and neon color spreading,” Psychol. Rev. 92, 173–211 (1985).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

1984 (4)

L. G. Thorell, L. G. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

M. Cohen, S. Grossberg, “Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance,” Percept. Psychophys. 36, 428–456 (1984).
[CrossRef] [PubMed]

C. Redies, L. Spillmann, K. Kunz, “Colored neon flanks and line gap enhancement,” Vision Res. 24, 1301–1309 (1984).
[CrossRef]

C. M. Schor, I. Wood, J. Ogawa, “Binocular sensory fusion is limited by spatial resolution,” Vision Res. 24, 661–665 (1984).
[CrossRef] [PubMed]

1983 (1)

C. M. Schor, I. Wood, “Disparity range for local stereopsis as a function of luminance spatial frequency,” Vision Res. 23, 1649–1654 (1983).
[CrossRef] [PubMed]

1981 (3)

C. M. Schor, C. W. Tyler, “Spatio-temporal properties of Panam’s fusional area,” Vision Res. 21, 683–692 (1981).
[CrossRef]

B. Julesz, R. A. Schumer, “Early visual perception,” Annu. Rev. Psychol. 32, 575–627 (1981).
[CrossRef] [PubMed]

C. Redies, L. Spillmann, “The neon color effect in the Ehrenstein illusion,” Perception 10, 667–681 (1981).
[CrossRef]

1980 (1)

S. Grossberg, “How does a brain build a cognitive code?” Psychol. Rev. 87, 1–51 (1980).
[CrossRef] [PubMed]

1979 (1)

H. F.J.M. van Tuijl, C. M.M. de Weert, “Sensory conditions for the occurrence of the neon spreading illusion,” Perception 8, 211–215 (1979).
[CrossRef] [PubMed]

1978 (2)

J. M. Kennedy, “Illusory contours and the ends of lines,” Perception 7, 605–607 (1978).
[CrossRef] [PubMed]

J. J. Kulikowski, “Limit of single vision in stereopsis depends on contour sharpness,” Nature 275, 126–127 (1978).
[CrossRef] [PubMed]

1975 (2)

C. W. Tyler, “Spatial organization of binocular disparity sensitivity,” Vision Res. 15, 583–590 (1975).
[CrossRef] [PubMed]

H. F.J.M. van Tuijl, “A new visual illusion: neon-like color spreading and complementary color induction between subjective contours,” Acta Psychol. 39, 441–445 (1975).
[CrossRef]

1974 (1)

W. A. Richards, M. G. Kaye, “Local versus global stereopsis: two mechanisms?” Vision Res. 14, 1345–1347 (1974).
[CrossRef] [PubMed]

1973 (1)

S. Grossberg, “Contour enhancement, short term memory, and constancies in reverberating neural networks,” Stud. Appl. Math. 52, 217–257 (1973).Reprinted in S. Grossberg, Studies of Mind and Brain (Reidel, 1982).
[CrossRef]

1971 (1)

D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo,” Riv. di Psicol. 65, 101–128 (1971).

1923 (1)

M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923).
[CrossRef]

1911 (1)

D. Katz, “Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung,” Z. Psychol., Ergänzungsbd 7, 6–31 (1911).

Akerstrom, R. A.

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. Hum. Percept. Perform. 13, 242–255 (1987).
[CrossRef] [PubMed]

Albrecht, D. G.

L. G. Thorell, L. G. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

Brelstaff, G.

B. Pinna, G. Brelstaff, L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vision Res. 41, 2669–2676 (2001).
[CrossRef] [PubMed]

Bressan, P.

P. Bressan, E. Mingolla, L. Spillmann, T. Watanabe, “Neon colour spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

P. Bressan, “Revisitation of the luminance conditions for the occurrence of the achromatic neon color spreading illusion,” Percept. Psychophys. 54, 55–64 (1993).
[CrossRef] [PubMed]

P. Bressan, “Neon color spreading with and without its figural prerequisites,” Perception 22, 353–361 (1993).
[CrossRef]

Cao, Y.

Y. Cao, S. Grossberg and , “A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis,” Techn. Rep. CAS/CNS-TR-2004-007.Spatial Vis. (to be published).

Cohen, M.

M. Cohen, S. Grossberg, “Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance,” Percept. Psychophys. 36, 428–456 (1984).
[CrossRef] [PubMed]

De Valois, L. G.

L. G. Thorell, L. G. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

de Weert, C. M.M.

H. F.J.M. van Tuijl, C. M.M. de Weert, “Sensory conditions for the occurrence of the neon spreading illusion,” Perception 8, 211–215 (1979).
[CrossRef] [PubMed]

Delahunt, P. B.

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
[CrossRef] [PubMed]

Devinck, F.

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
[CrossRef] [PubMed]

Douglas, R. J.

R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
[CrossRef] [PubMed]

Grossberg, S.

S. Grossberg, A. Yazdanbakhsh, “Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading,” Vision Res. 45, 1725–1743 (2005).
[CrossRef] [PubMed]

S. Grossberg, G. Swaminathan, “A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability,” Vision Res. 44, 1147–1187 (2004).
[CrossRef] [PubMed]

S. Grossberg, “How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex,” Behav. Cog. Neurosci. Rev. 2, 47–76 (2003).
[CrossRef]

S. Grossberg, P. A. Howe, “Laminar cortical model of stereopsis and three-dimensional surface perception,” Vision Res. 43, 801–829 (2003).
[CrossRef] [PubMed]

R. D.S. Raizada, S. Grossberg, “Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system,” Cereb. Cortex 13, 100–113 (2003).
[CrossRef]

S. Grossberg, J. R. Williamson, “A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning,” Cereb. Cortex 11, 37–58 (2001).
[CrossRef]

R. D.S. Raizada, S. Grossberg, “Context-sensitive binding by the laminar circuits of V1 and V2: a unified model of perceptual grouping, attention, and orientation contrast,” Special Issue on Neural Binding of Space and Time, Visual Cogn. 8 (3/4/5), 431–466 (2001).
[CrossRef]

S. Grossberg, R. D.S. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

S. Grossberg, “The complementary brain: unifying brain dynamics and modularity,” Trends Cogn. Sci. 4, 233–245 (2000).
[CrossRef] [PubMed]

F. Kelly, S. Grossberg, “Neural dynamics of 3-D surface perception: figure–ground separation and lightness perception,” Percept. Psychophys. 62, 1596–1618 (2000).
[CrossRef]

S. Grossberg, “A comment on ‘Assimilation of achromatic color cannot explain the brightness effect in the achromatic neon effect’ by M. K. Albert,” Perception 28, 1291–1302 (1999).
[CrossRef]

S. Grossberg, F. Kelly, “Neural dynamics of binocular brightness perception,” Vision Res. 39, 3796–3816 (1999).
[CrossRef]

S. Grossberg, “How does the cerebral cortex work? Learning, attention and grouping by the laminar circuits of visual cortex,” Spatial Vis. 12, 163–186 (1999).
[CrossRef]

S. Grossberg, L. Pessoa, “Texture segregation, surface representation and figure–ground separation,” Vision Res. 38, 1657–1684 (1998).
[CrossRef]

N. P. McLoughlin, S. Grossberg, “Cortical computation of stereo disparity,” Vision Res. 38, 91–99 (1998).
[CrossRef] [PubMed]

S. Grossberg, N. P. McLoughlin, “Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images,” Neural Networks 10, 1583–1605 (1997).
[CrossRef]

S. Grossberg, E. Mingolla, W. D. Ross, “Visual brain and visual perception: How does the cortex do perceptual grouping?” Trends Neurosci. 20, 106–111 (1997).
[CrossRef] [PubMed]

S. Grossberg, “Cortical dynamics of three-dimensional figure–ground perception of two-dimensional pictures,” Psychol. Rev. 104, 618–658 (1997).
[CrossRef] [PubMed]

S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
[CrossRef] [PubMed]

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception: II: Binocular theory,” Percept. Psychophys. 41, 117–158 (1987).
[CrossRef] [PubMed]

S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception, I: Monocular theory,” Percept. Psychophys. 41, 87–116 (1987).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of surface perception: boundary webs, illuminants, and shape-from-shading,” Comput. Vis. Graph. Image Process. 37, 116–165 (1987).
[CrossRef]

S. Grossberg, E. Mingolla, “Neural dynamics of form perception. Boundary completion, illusory figures and neon color spreading,” Psychol. Rev. 92, 173–211 (1985).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

M. Cohen, S. Grossberg, “Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance,” Percept. Psychophys. 36, 428–456 (1984).
[CrossRef] [PubMed]

S. Grossberg, “How does a brain build a cognitive code?” Psychol. Rev. 87, 1–51 (1980).
[CrossRef] [PubMed]

S. Grossberg, “Contour enhancement, short term memory, and constancies in reverberating neural networks,” Stud. Appl. Math. 52, 217–257 (1973).Reprinted in S. Grossberg, Studies of Mind and Brain (Reidel, 1982).
[CrossRef]

Y. Cao, S. Grossberg and , “A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis,” Techn. Rep. CAS/CNS-TR-2004-007.Spatial Vis. (to be published).

S. Grossberg, “Outline of a theory of brightness, color, and form perception,” in Trends in Mathematical Psychology, E. Degreef and J. van Buggenhaut, eds. (North-Holland, 1984), pp. 59–86.
[CrossRef]

Hardy, J. L.

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
[CrossRef] [PubMed]

Heeger, D. J.

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
[CrossRef]

Howe, P. A.

S. Grossberg, P. A. Howe, “Laminar cortical model of stereopsis and three-dimensional surface perception,” Vision Res. 43, 801–829 (2003).
[CrossRef] [PubMed]

Julesz, B.

B. Julesz, R. A. Schumer, “Early visual perception,” Annu. Rev. Psychol. 32, 575–627 (1981).
[CrossRef] [PubMed]

Katz, D.

D. Katz, “Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung,” Z. Psychol., Ergänzungsbd 7, 6–31 (1911).

D. Katz, Die Erscheinungsweisen der Farben, 2nd ed (1930)[translation into English: R. B. MacLeod, C. W. Fox and , The World of Color (Kegan Paul, 1935)].

Kaye, M. G.

W. A. Richards, M. G. Kaye, “Local versus global stereopsis: two mechanisms?” Vision Res. 14, 1345–1347 (1974).
[CrossRef] [PubMed]

Kellman, P. J.

T. F. Shipley, P. J. Kellman, “The role of discontinuities in the perception of subjective figures,” Percept. Psychophys. 48, 259–270 (1990).
[CrossRef] [PubMed]

Kelly, F.

F. Kelly, S. Grossberg, “Neural dynamics of 3-D surface perception: figure–ground separation and lightness perception,” Percept. Psychophys. 62, 1596–1618 (2000).
[CrossRef]

S. Grossberg, F. Kelly, “Neural dynamics of binocular brightness perception,” Vision Res. 39, 3796–3816 (1999).
[CrossRef]

Kennedy, J. M.

J. M. Kennedy, “Illusory contours and the ends of lines,” Perception 7, 605–607 (1978).
[CrossRef] [PubMed]

Koch, C.

R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
[CrossRef] [PubMed]

Koffka, K.

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, 1935).

Kulikowski, J. J.

J. J. Kulikowski, “Limit of single vision in stereopsis depends on contour sharpness,” Nature 275, 126–127 (1978).
[CrossRef] [PubMed]

Kunz, K.

C. Redies, L. Spillmann, K. Kunz, “Colored neon flanks and line gap enhancement,” Vision Res. 24, 1301–1309 (1984).
[CrossRef]

Mahowald, M.

R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
[CrossRef] [PubMed]

Martin, K. A.C.

R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
[CrossRef] [PubMed]

McLoughlin, N. P.

N. P. McLoughlin, S. Grossberg, “Cortical computation of stereo disparity,” Vision Res. 38, 91–99 (1998).
[CrossRef] [PubMed]

S. Grossberg, N. P. McLoughlin, “Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images,” Neural Networks 10, 1583–1605 (1997).
[CrossRef]

Metzger, W.

W. Metzger, Psychologie, Die Entwicklung ihrer Grundannahmen seit der Einführung des Experimentes, Zweite Auflage (Steinkopff, Darmstadt, 1954).

Mingolla, E.

P. Bressan, E. Mingolla, L. Spillmann, T. Watanabe, “Neon colour spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

S. Grossberg, E. Mingolla, W. D. Ross, “Visual brain and visual perception: How does the cortex do perceptual grouping?” Trends Neurosci. 20, 106–111 (1997).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of surface perception: boundary webs, illuminants, and shape-from-shading,” Comput. Vis. Graph. Image Process. 37, 116–165 (1987).
[CrossRef]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of form perception. Boundary completion, illusory figures and neon color spreading,” Psychol. Rev. 92, 173–211 (1985).
[CrossRef] [PubMed]

Ogawa, J.

C. M. Schor, I. Wood, J. Ogawa, “Binocular sensory fusion is limited by spatial resolution,” Vision Res. 24, 661–665 (1984).
[CrossRef] [PubMed]

Pessoa, L.

S. Grossberg, L. Pessoa, “Texture segregation, surface representation and figure–ground separation,” Vision Res. 38, 1657–1684 (1998).
[CrossRef]

Pinna, B.

B. Pinna, “The role of Gestalt principle of similarity in the watercolour illusion,” Spatial Vis. 21, 1–8 (2005).

B. Pinna, J. S. Werner, L. Spillmann, “The watercolor effect: a new principle of grouping and figure–ground organization” Vision Res. 43, 43–52 (2003).
[CrossRef]

B. Pinna, G. Brelstaff, L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vision Res. 41, 2669–2676 (2001).
[CrossRef] [PubMed]

B. Pinna, “The neon color spreading and the watercolor illusion: phenomenal links and neural mechanisms,” in Variety of Complex Systems Behaviors, Proceedings of the Third National Conference on Systems Science, G. Minati and E. Pessa, eds. (Kluwer Academic, 2005).

L. Spillmann, B. Pinna, J. S. Werner, “Form-from-watercolour in perception and old maps,” in Seeing Spatial Form, M. R.M. Jenkin and L. R. Harris, eds. (Oxford U. Press) (to be published).

B. Pinna, “Un effetto di colorazione,” in Il laboratorio e la città. XXI Congresso degli Psicologi Italiani, V. Majer, M. Maeran, and M. Santinello, eds. (Edizioni SIPs, Società Italiana di Psiocologia, Milano, 1987), p. 158.

Raizada, R. D.S.

R. D.S. Raizada, S. Grossberg, “Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system,” Cereb. Cortex 13, 100–113 (2003).
[CrossRef]

R. D.S. Raizada, S. Grossberg, “Context-sensitive binding by the laminar circuits of V1 and V2: a unified model of perceptual grouping, attention, and orientation contrast,” Special Issue on Neural Binding of Space and Time, Visual Cogn. 8 (3/4/5), 431–466 (2001).
[CrossRef]

S. Grossberg, R. D.S. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

Redies, C.

C. Redies, L. Spillmann, K. Kunz, “Colored neon flanks and line gap enhancement,” Vision Res. 24, 1301–1309 (1984).
[CrossRef]

C. Redies, L. Spillmann, “The neon color effect in the Ehrenstein illusion,” Perception 10, 667–681 (1981).
[CrossRef]

Richards, W. A.

W. A. Richards, M. G. Kaye, “Local versus global stereopsis: two mechanisms?” Vision Res. 14, 1345–1347 (1974).
[CrossRef] [PubMed]

Ross, W. D.

S. Grossberg, E. Mingolla, W. D. Ross, “Visual brain and visual perception: How does the cortex do perceptual grouping?” Trends Neurosci. 20, 106–111 (1997).
[CrossRef] [PubMed]

Rubin, E.

E. Rubin, Synsoplevede Figurer (Glydendalske, 1915).

E. Rubin, Visuell wahrgenommene Figuren (Gyldendalske Boghandel, 1921).

Sambin, M.

M. Sambin, “Adynamic model of anomalous figures,” in The Perception of Illusory Contours, S. Petry and G. E. Meyer, eds. (Springer, New York, 1987), pp 131–142.
[CrossRef]

Schor, C. M.

C. M. Schor, I. Wood, J. Ogawa, “Binocular sensory fusion is limited by spatial resolution,” Vision Res. 24, 661–665 (1984).
[CrossRef] [PubMed]

C. M. Schor, I. Wood, “Disparity range for local stereopsis as a function of luminance spatial frequency,” Vision Res. 23, 1649–1654 (1983).
[CrossRef] [PubMed]

C. M. Schor, C. W. Tyler, “Spatio-temporal properties of Panam’s fusional area,” Vision Res. 21, 683–692 (1981).
[CrossRef]

Schramme, J.

C. von Campenhausen, J. Schramme, “100 years of Benham’s top in colour science,” Perception 24, 695–717 (1995).
[CrossRef]

Schumer, R. A.

B. Julesz, R. A. Schumer, “Early visual perception,” Annu. Rev. Psychol. 32, 575–627 (1981).
[CrossRef] [PubMed]

Shipley, T. F.

T. F. Shipley, P. J. Kellman, “The role of discontinuities in the perception of subjective figures,” Percept. Psychophys. 48, 259–270 (1990).
[CrossRef] [PubMed]

Spillmann, L.

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
[CrossRef] [PubMed]

B. Pinna, J. S. Werner, L. Spillmann, “The watercolor effect: a new principle of grouping and figure–ground organization” Vision Res. 43, 43–52 (2003).
[CrossRef]

B. Pinna, G. Brelstaff, L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vision Res. 41, 2669–2676 (2001).
[CrossRef] [PubMed]

P. Bressan, E. Mingolla, L. Spillmann, T. Watanabe, “Neon colour spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

C. Redies, L. Spillmann, K. Kunz, “Colored neon flanks and line gap enhancement,” Vision Res. 24, 1301–1309 (1984).
[CrossRef]

C. Redies, L. Spillmann, “The neon color effect in the Ehrenstein illusion,” Perception 10, 667–681 (1981).
[CrossRef]

L. Spillmann, B. Pinna, J. S. Werner, “Form-from-watercolour in perception and old maps,” in Seeing Spatial Form, M. R.M. Jenkin and L. R. Harris, eds. (Oxford U. Press) (to be published).

Suarez, H. H.

R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
[CrossRef] [PubMed]

Swaminathan, G.

S. Grossberg, G. Swaminathan, “A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability,” Vision Res. 44, 1147–1187 (2004).
[CrossRef] [PubMed]

Thorell, L. G.

L. G. Thorell, L. G. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

Todd, J. T.

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. Hum. Percept. Perform. 13, 242–255 (1987).
[CrossRef] [PubMed]

Todorovic, D.

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

Tyler, C. W.

C. M. Schor, C. W. Tyler, “Spatio-temporal properties of Panam’s fusional area,” Vision Res. 21, 683–692 (1981).
[CrossRef]

C. W. Tyler, “Spatial organization of binocular disparity sensitivity,” Vision Res. 15, 583–590 (1975).
[CrossRef] [PubMed]

C. W. Tyler, “Sensory processing of binocular disparity,” in Basic and Clinical Aspects of Binocular Vergence Eye Movements, Schor and Ciuffreda, eds. (Butterworths, 1983), pp. 199–295.

van Tuijl, H. F.J.M.

H. F.J.M. van Tuijl, C. M.M. de Weert, “Sensory conditions for the occurrence of the neon spreading illusion,” Perception 8, 211–215 (1979).
[CrossRef] [PubMed]

H. F.J.M. van Tuijl, “A new visual illusion: neon-like color spreading and complementary color induction between subjective contours,” Acta Psychol. 39, 441–445 (1975).
[CrossRef]

Varin, D.

D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo,” Riv. di Psicol. 65, 101–128 (1971).

von Campenhausen, C.

C. von Campenhausen, J. Schramme, “100 years of Benham’s top in colour science,” Perception 24, 695–717 (1995).
[CrossRef]

Watanabe, T.

P. Bressan, E. Mingolla, L. Spillmann, T. Watanabe, “Neon colour spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

Werner, J. S.

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
[CrossRef] [PubMed]

B. Pinna, J. S. Werner, L. Spillmann, “The watercolor effect: a new principle of grouping and figure–ground organization” Vision Res. 43, 43–52 (2003).
[CrossRef]

L. Spillmann, B. Pinna, J. S. Werner, “Form-from-watercolour in perception and old maps,” in Seeing Spatial Form, M. R.M. Jenkin and L. R. Harris, eds. (Oxford U. Press) (to be published).

Wertheimer, M.

M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923).
[CrossRef]

Williamson, J. R.

S. Grossberg, J. R. Williamson, “A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning,” Cereb. Cortex 11, 37–58 (2001).
[CrossRef]

Wood, I.

C. M. Schor, I. Wood, J. Ogawa, “Binocular sensory fusion is limited by spatial resolution,” Vision Res. 24, 661–665 (1984).
[CrossRef] [PubMed]

C. M. Schor, I. Wood, “Disparity range for local stereopsis as a function of luminance spatial frequency,” Vision Res. 23, 1649–1654 (1983).
[CrossRef] [PubMed]

Yazdanbakhsh, A.

S. Grossberg, A. Yazdanbakhsh, “Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading,” Vision Res. 45, 1725–1743 (2005).
[CrossRef] [PubMed]

Acta Psychol. (1)

H. F.J.M. van Tuijl, “A new visual illusion: neon-like color spreading and complementary color induction between subjective contours,” Acta Psychol. 39, 441–445 (1975).
[CrossRef]

Annu. Rev. Psychol. (1)

B. Julesz, R. A. Schumer, “Early visual perception,” Annu. Rev. Psychol. 32, 575–627 (1981).
[CrossRef] [PubMed]

Behav. Cog. Neurosci. Rev. (1)

S. Grossberg, “How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex,” Behav. Cog. Neurosci. Rev. 2, 47–76 (2003).
[CrossRef]

Cereb. Cortex (2)

R. D.S. Raizada, S. Grossberg, “Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system,” Cereb. Cortex 13, 100–113 (2003).
[CrossRef]

S. Grossberg, J. R. Williamson, “A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning,” Cereb. Cortex 11, 37–58 (2001).
[CrossRef]

Comput. Vis. Graph. Image Process. (1)

S. Grossberg, E. Mingolla, “Neural dynamics of surface perception: boundary webs, illuminants, and shape-from-shading,” Comput. Vis. Graph. Image Process. 37, 116–165 (1987).
[CrossRef]

J. Exp. Psychol. Hum. Percept. Perform. (1)

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. Hum. Percept. Perform. 13, 242–255 (1987).
[CrossRef] [PubMed]

Nature (1)

J. J. Kulikowski, “Limit of single vision in stereopsis depends on contour sharpness,” Nature 275, 126–127 (1978).
[CrossRef] [PubMed]

Neural Networks (1)

S. Grossberg, N. P. McLoughlin, “Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images,” Neural Networks 10, 1583–1605 (1997).
[CrossRef]

Percept. Psychophys. (9)

F. Kelly, S. Grossberg, “Neural dynamics of 3-D surface perception: figure–ground separation and lightness perception,” Percept. Psychophys. 62, 1596–1618 (2000).
[CrossRef]

S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception, I: Monocular theory,” Percept. Psychophys. 41, 87–116 (1987).
[CrossRef] [PubMed]

M. Cohen, S. Grossberg, “Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance,” Percept. Psychophys. 36, 428–456 (1984).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

P. Bressan, “Revisitation of the luminance conditions for the occurrence of the achromatic neon color spreading illusion,” Percept. Psychophys. 54, 55–64 (1993).
[CrossRef] [PubMed]

S. Grossberg, “Cortical dynamics of three-dimensional form, color, and brightness perception: II: Binocular theory,” Percept. Psychophys. 41, 117–158 (1987).
[CrossRef] [PubMed]

S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
[CrossRef] [PubMed]

T. F. Shipley, P. J. Kellman, “The role of discontinuities in the perception of subjective figures,” Percept. Psychophys. 48, 259–270 (1990).
[CrossRef] [PubMed]

S. Grossberg, D. Todorovic, “Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena,” Percept. Psychophys. 43, 241–277 (1988).
[CrossRef] [PubMed]

Perception (7)

C. von Campenhausen, J. Schramme, “100 years of Benham’s top in colour science,” Perception 24, 695–717 (1995).
[CrossRef]

C. Redies, L. Spillmann, “The neon color effect in the Ehrenstein illusion,” Perception 10, 667–681 (1981).
[CrossRef]

P. Bressan, “Neon color spreading with and without its figural prerequisites,” Perception 22, 353–361 (1993).
[CrossRef]

J. M. Kennedy, “Illusory contours and the ends of lines,” Perception 7, 605–607 (1978).
[CrossRef] [PubMed]

P. Bressan, E. Mingolla, L. Spillmann, T. Watanabe, “Neon colour spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

H. F.J.M. van Tuijl, C. M.M. de Weert, “Sensory conditions for the occurrence of the neon spreading illusion,” Perception 8, 211–215 (1979).
[CrossRef] [PubMed]

S. Grossberg, “A comment on ‘Assimilation of achromatic color cannot explain the brightness effect in the achromatic neon effect’ by M. K. Albert,” Perception 28, 1291–1302 (1999).
[CrossRef]

Psychol. Forsch. (1)

M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt II,” Psychol. Forsch. 4, 301–350 (1923).
[CrossRef]

Psychol. Rev. (3)

S. Grossberg, “Cortical dynamics of three-dimensional figure–ground perception of two-dimensional pictures,” Psychol. Rev. 104, 618–658 (1997).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of form perception. Boundary completion, illusory figures and neon color spreading,” Psychol. Rev. 92, 173–211 (1985).
[CrossRef] [PubMed]

S. Grossberg, “How does a brain build a cognitive code?” Psychol. Rev. 87, 1–51 (1980).
[CrossRef] [PubMed]

Riv. di Psicol. (1)

D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo,” Riv. di Psicol. 65, 101–128 (1971).

Science (1)

R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
[CrossRef] [PubMed]

Spatial Vis. (2)

S. Grossberg, “How does the cerebral cortex work? Learning, attention and grouping by the laminar circuits of visual cortex,” Spatial Vis. 12, 163–186 (1999).
[CrossRef]

B. Pinna, “The role of Gestalt principle of similarity in the watercolour illusion,” Spatial Vis. 21, 1–8 (2005).

Stud. Appl. Math. (1)

S. Grossberg, “Contour enhancement, short term memory, and constancies in reverberating neural networks,” Stud. Appl. Math. 52, 217–257 (1973).Reprinted in S. Grossberg, Studies of Mind and Brain (Reidel, 1982).
[CrossRef]

Trends Cogn. Sci. (1)

S. Grossberg, “The complementary brain: unifying brain dynamics and modularity,” Trends Cogn. Sci. 4, 233–245 (2000).
[CrossRef] [PubMed]

Trends Neurosci. (1)

S. Grossberg, E. Mingolla, W. D. Ross, “Visual brain and visual perception: How does the cortex do perceptual grouping?” Trends Neurosci. 20, 106–111 (1997).
[CrossRef] [PubMed]

Vision Res. (17)

S. Grossberg, R. D.S. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

S. Grossberg, P. A. Howe, “Laminar cortical model of stereopsis and three-dimensional surface perception,” Vision Res. 43, 801–829 (2003).
[CrossRef] [PubMed]

S. Grossberg, G. Swaminathan, “A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability,” Vision Res. 44, 1147–1187 (2004).
[CrossRef] [PubMed]

S. Grossberg, F. Kelly, “Neural dynamics of binocular brightness perception,” Vision Res. 39, 3796–3816 (1999).
[CrossRef]

N. P. McLoughlin, S. Grossberg, “Cortical computation of stereo disparity,” Vision Res. 38, 91–99 (1998).
[CrossRef] [PubMed]

S. Grossberg, L. Pessoa, “Texture segregation, surface representation and figure–ground separation,” Vision Res. 38, 1657–1684 (1998).
[CrossRef]

S. Grossberg, A. Yazdanbakhsh, “Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading,” Vision Res. 45, 1725–1743 (2005).
[CrossRef] [PubMed]

W. A. Richards, M. G. Kaye, “Local versus global stereopsis: two mechanisms?” Vision Res. 14, 1345–1347 (1974).
[CrossRef] [PubMed]

C. M. Schor, C. W. Tyler, “Spatio-temporal properties of Panam’s fusional area,” Vision Res. 21, 683–692 (1981).
[CrossRef]

C. M. Schor, I. Wood, “Disparity range for local stereopsis as a function of luminance spatial frequency,” Vision Res. 23, 1649–1654 (1983).
[CrossRef] [PubMed]

C. M. Schor, I. Wood, J. Ogawa, “Binocular sensory fusion is limited by spatial resolution,” Vision Res. 24, 661–665 (1984).
[CrossRef] [PubMed]

C. W. Tyler, “Spatial organization of binocular disparity sensitivity,” Vision Res. 15, 583–590 (1975).
[CrossRef] [PubMed]

C. Redies, L. Spillmann, K. Kunz, “Colored neon flanks and line gap enhancement,” Vision Res. 24, 1301–1309 (1984).
[CrossRef]

L. G. Thorell, L. G. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms in long-range color assimilation,” Vision Res. 45, 1413–1424 (2005).
[CrossRef] [PubMed]

B. Pinna, G. Brelstaff, L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vision Res. 41, 2669–2676 (2001).
[CrossRef] [PubMed]

B. Pinna, J. S. Werner, L. Spillmann, “The watercolor effect: a new principle of grouping and figure–ground organization” Vision Res. 43, 43–52 (2003).
[CrossRef]

Visual Cogn. (1)

R. D.S. Raizada, S. Grossberg, “Context-sensitive binding by the laminar circuits of V1 and V2: a unified model of perceptual grouping, attention, and orientation contrast,” Special Issue on Neural Binding of Space and Time, Visual Cogn. 8 (3/4/5), 431–466 (2001).
[CrossRef]

Visual Neurosci. (1)

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
[CrossRef]

Z. Psychol., Ergänzungsbd (1)

D. Katz, “Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung,” Z. Psychol., Ergänzungsbd 7, 6–31 (1911).

Other (12)

D. Katz, Die Erscheinungsweisen der Farben, 2nd ed (1930)[translation into English: R. B. MacLeod, C. W. Fox and , The World of Color (Kegan Paul, 1935)].

L. Spillmann, B. Pinna, J. S. Werner, “Form-from-watercolour in perception and old maps,” in Seeing Spatial Form, M. R.M. Jenkin and L. R. Harris, eds. (Oxford U. Press) (to be published).

B. Pinna, “Un effetto di colorazione,” in Il laboratorio e la città. XXI Congresso degli Psicologi Italiani, V. Majer, M. Maeran, and M. Santinello, eds. (Edizioni SIPs, Società Italiana di Psiocologia, Milano, 1987), p. 158.

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, 1935).

W. Metzger, Psychologie, Die Entwicklung ihrer Grundannahmen seit der Einführung des Experimentes, Zweite Auflage (Steinkopff, Darmstadt, 1954).

S. Grossberg, “Outline of a theory of brightness, color, and form perception,” in Trends in Mathematical Psychology, E. Degreef and J. van Buggenhaut, eds. (North-Holland, 1984), pp. 59–86.
[CrossRef]

E. Rubin, Synsoplevede Figurer (Glydendalske, 1915).

E. Rubin, Visuell wahrgenommene Figuren (Gyldendalske Boghandel, 1921).

B. Pinna, “The neon color spreading and the watercolor illusion: phenomenal links and neural mechanisms,” in Variety of Complex Systems Behaviors, Proceedings of the Third National Conference on Systems Science, G. Minati and E. Pessa, eds. (Kluwer Academic, 2005).

M. Sambin, “Adynamic model of anomalous figures,” in The Perception of Illusory Contours, S. Petry and G. E. Meyer, eds. (Springer, New York, 1987), pp 131–142.
[CrossRef]

Y. Cao, S. Grossberg and , “A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis,” Techn. Rep. CAS/CNS-TR-2004-007.Spatial Vis. (to be published).

C. W. Tyler, “Sensory processing of binocular disparity,” in Basic and Clinical Aspects of Binocular Vergence Eye Movements, Schor and Ciuffreda, eds. (Butterworths, 1983), pp. 199–295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Neon color spreading: a, The central virtual circle and b, the inset virtual diamond shape appear as a ghostly overlapping transparent veil of bluish tint spreading among the boundaries of the blue components.

Fig. 2
Fig. 2

Figural effect of the neon color spreading: When the surrounding elements have less contrast than the inset ones, the inset components appear as a background rather than as a foreground.

Fig. 3
Fig. 3

Watercolor illusion: purple undulated contours flanked by orange edges are perceived as undefined irregular curved shapes with a plain volumetric effect evenly colored by a light veil of orange tint spreading from the orange edges.

Fig. 4
Fig. 4

When purple and orange lines in Fig. 3 are reversed, stars with a different number of points are now perceived.

Fig. 5
Fig. 5

Light blue coloration spreading from the inset square of elements appears surrounded by a red spreading. The coloration effect is not accompanied by a figural effect with a plain volumetric property, but it appears diaphanous like a foggy veil of color.

Fig. 6
Fig. 6

Illusory coloration of the star appears fuzzy and luminous and manifests a poor surface appearance.

Fig. 7
Fig. 7

columns bulge in the 3D space even if they appear softly and nebulously colored.

Fig. 8
Fig. 8

A transparent watercolored frame.

Fig. 9
Fig. 9

Regions delimited by high-contrasted adjacent lines (black and red) show a clear figural effect and a surface color property, while the regions delimited by quasi-equiluminant adjacent lines (gray and red) show an ethereal soft coloration without any figural property.

Fig. 10
Fig. 10

Four conditions that gradually introduce a limiting case: (i) a, The neon color spreading defined by the continuation of lines of different color (a); (ii) b, a condition in between neon color spreading and watercolor illusion, where the orange inset arcs are reduced to short dashes (b); (iii) c, a condition once again in between neon color spreading and watercolor illusion, where the purple surrounding arcs of part “a” are reduced to short dashes; (iv) d, the two-dots limiting case obtained by reducing both purple and orange arcs to short dashes and considered as the basis for a common neural model to account for the neon color spreading and the watercolor illusion.

Fig. 11
Fig. 11

Mean coloration ratings for four stimuli conditions: (i) Three levels of length of purple arcs; (ii) three levels of length of the orange arcs; (iii) chromatic assimilation of arcs obtained by removing purple components; (iv) assimilation of short orange dashes obtained by removing purple components. Above the graph, lower and upper values (1–8) used for the magnitude estimation are illustrated.

Fig. 12
Fig. 12

Some known cortical connections that are joined together in the LAMINART model of bottom-up, horizontal, and top-down interactions within visual cortical areas V1 and V2. See Raizada and Grossberg[40] for summaries of supportive anatomical and neurophysiological data. Inhibitory interneurons are shown as filled-in black symbols. (a) The LGN provides bottom-up activation to layer 4 via two routes. First, it makes a strong connection directly into layer 4. Second, LGN axons send collaterals into layer 6 and thereby also activate layer 4 via the 6 4 on-center off-surround path. The combined effect of the bottom-up LGN pathways is to stimulate layer 4 via an on-center off-surround, which provides divisive contrast normalization of layer 4 cell responses. The excitatory and inhibitory layer 6 inputs to the layer 4 on-center are approximately balanced. As a result, the on-center receives a modulatory, but not driving, input. (b) Connecting the 6 4 on-center off-surround network to the layer 2 3 grouping circuit: Like-oriented layer 4 simple cells with opposite contrast polarities compete (not shown) before generating half-wave rectified outputs that converge onto layer 2 3 complex cells in the column above them. Layer 2 3 contains long-range oriented recurrent connections to other layer 2 3 cells. A balance between excitation via long-range horizontal connections and short-range disynaptic inhibitory interneurons helps to control which layer 2 3 cells will fire, as does interlaminar feedback: Layer 2 3 cells send activation to enhance their own positions in layer 4 via the 6 4 on-center and to suppress input to other layer 2 3 cells via the 6 4 off-surround. There exist direct layer 2 3 6 connections in macaque V1, as well as indirect routes via layer 5. (c) V2 repeats the laminar pattern of V1 circuitry but at a larger spatial scale. In particular, perceptual groupings form using the V2 horizontal layer 2 3 connections, which have a longer range than the connections in layer 2 3 of V1. V1 layer 2 3 projects up to V2 layers 6 and 4, just as LGN projects to layers 6 and 4 of V1. Higher cortical areas send attentional feedback into V2, which ultimately reaches layer 6, just as V2 feedback acts on layer 6 of V1. Feedback paths from higher cortical areas straight into V1 (not shown) can complement and enhance feedback from V2 into V1. Top-down attention can also modulate layer 2 3 pyramidal cells directly by activating both the pyramidal cells and the inhibitory interneurons in that layer. The inhibition tends to balance the excitation, leading to a modulatory effect. These top-down attentional pathways tend to synapse on apical dendrites in layer 1, which are not shown, for simplicity. (Reprinted with permission from Grossberg and Raizada.[39])

Metrics