Abstract

Brightness induction refers to the finding that the apparent brightness of a stimulus changes when surrounded by a black versus a white stimulus. In the current study, we investigated the effects of black/white surrounding stimuli on settings made between red and green stimuli on three different tasks: heterochromatic brightness matching (HBM), heterochromatic flicker photometry (HFP), and minimally distinct border (MDB). For HBM, subjects varied the relative luminance between the red and green stimuli so that the brightness of the two colors appeared equal. For the two other tasks, matches were made based on minimizing red/green flicker (HFP) or the saliency of a red/green border (MDB). For all three tasks, the presence of black/white surrounding stimuli significantly altered red/green settings, demonstrating the existence of induction effects. These results are discussed in terms of which underlying color pathways (L+M versus LM) may contribute to induction effects for the different tasks.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, Original English Translation 1854; republished in 1967 (Reinhold, 1839).
  2. E. G. Heinemann, “Simultaneous brightness induction as a function of inducing- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
    [CrossRef] [PubMed]
  3. E. G. Heinemann, “The relation of apparent brightness to the threshold for differences in luminance,” J. Exp. Psychol. 61, 389–399 (1961).
    [CrossRef] [PubMed]
  4. E. W. Yund, J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vision Res. 15, 917–929 (1975).
    [CrossRef] [PubMed]
  5. S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
    [CrossRef] [PubMed]
  6. H. G. Sperling, W. G. Lewis, “Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold,” J. Opt. Soc. Am. 49, 983–989 (1959).
    [CrossRef] [PubMed]
  7. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  8. M. Ikeda, H. Shimozono, “Luminous efficiency functions determined by successive brightness matching,” J. Opt. Soc. Am. 68, 1767–1771 (1978).
    [CrossRef]
  9. J. Kremers, H. P.N. Scholl, H. Knau, T. T.J.M. Berendschot, T. Usui, L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  10. R. M. Boynton, P. K. Kaiser, “Vision: the additivity law made to work for heterochromatic photometry with bipartite fields,” Science 161, 366–368 (1968).
    [CrossRef] [PubMed]
  11. A. Eisner, D. I.A. MacLeod, “Blue sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
    [CrossRef] [PubMed]
  12. R. M. Boynton, R. T. Eskew, C. X. Olson, “Blue cones contribute to border distinctness,” Vision Res. 25, 1349–1352 (1985).
    [CrossRef] [PubMed]
  13. A. Stockman, D. I.A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
    [CrossRef] [PubMed]
  14. K. L. Gunther, K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vision Res. 42, 1367–1378 (2002).
    [CrossRef] [PubMed]
  15. K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitive and chromatic (green/red) contrast sensitivity?” Vision Res. 40, 613–628 (2000).
    [CrossRef]
  16. B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).
  17. R. M. Boynton, P. K. Kaiser, “Temporal analog of the minimally distinct border,” Vision Res. 18, 111–113 (1978).
    [CrossRef] [PubMed]
  18. B. Blakeslee, M. E. McCourt, “Similar mechanisms underlie simultaneous brightness contrast and grating induction,” Vision Res. 37, 2849–2869 (1997).
    [CrossRef]
  19. D. H. Peterzell, J. S. Werner, P. S. Kaplan, “Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6- and 8-month-old human infants,” Vision Res. 35, 961–979 (1995).
    [CrossRef] [PubMed]
  20. M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
    [CrossRef]
  21. J. D. Conner, D. I.A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 698–699 (1977).
    [CrossRef] [PubMed]
  22. T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
    [PubMed]
  23. V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
    [PubMed]
  24. H. Sun, J. Pokorny, V. C. Smith, “Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways,” J. Vision 1, 42–54 (2001).
    [CrossRef]
  25. H. deVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague, Neth.) 24, 199–212 (1948).
  26. M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
    [CrossRef] [PubMed]
  27. B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).
  28. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef] [PubMed]
  29. M. Gur, D. M. Snodderly, “A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived,” Vision Res. 37, 377–382 (1997).
    [CrossRef] [PubMed]
  30. G. Wagner, R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972).
    [CrossRef] [PubMed]
  31. P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).
  32. J. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [CrossRef] [PubMed]
  33. L. Kerr, “Effect of chromatic contrast on stimulus brightness,” Vision Res. 16, 463–468 (1976).
    [CrossRef] [PubMed]
  34. C. Ware, “Evidence for an independent luminance channel,” J. Opt. Soc. Am. 73, 1379–1382 (1983).
    [CrossRef] [PubMed]
  35. M. A. Webster, J. D. Mollon, “Contrast adaptation dissociated different measures of luminance efficiency,” J. Opt. Soc. Am. A 10, 1332–1340 (1993).
    [CrossRef] [PubMed]
  36. S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
    [CrossRef] [PubMed]
  37. S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [CrossRef] [PubMed]
  38. H. Yaguchi, M. Ikeda, “Subadditivity and superadditivity in heterochromatic brightness matching,” Vision Res. 23, 1711–1718 (1983).
    [CrossRef] [PubMed]
  39. H. Yaguchi, M. Ikeda, “Contribution of opponent-colour channels to brightness,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 353–360.
  40. E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color defective observers,” Vision Res. 36, 1597–1613 (1996).
    [CrossRef] [PubMed]
  41. P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
    [CrossRef] [PubMed]
  42. L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
    [CrossRef]
  43. M. Kalloniatis, M. J. Pianta, “L and M cone input into spectral sensitivity functions: a reanalysis,” Vision Res. 37, 799–811 (1997).
    [CrossRef] [PubMed]
  44. A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
    [CrossRef] [PubMed]
  45. A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
    [PubMed]
  46. M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the Macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
    [PubMed]
  47. D. G. Albrecht, “Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions,” Visual Neurosci. 12, 1191–1210 (1995).
    [CrossRef]
  48. T. J. Gawne, T. W. Kjaer, B. J. Richmond, “Latency: another potential code for feature binding in striate cortex,” J. Neurophysiol. 76, 1356–1360 (1996).
    [PubMed]
  49. J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
    [PubMed]
  50. S. Magnussen, A. Glad, “Temporal frequency characteristics of spatial interaction in human vision,” Exp. Brain Res. 23, 519–528 (1975).
    [CrossRef] [PubMed]
  51. M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
    [CrossRef] [PubMed]
  52. A. F. Rossi, M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vision Res. 36, 1391–1398 (1996).
    [CrossRef] [PubMed]
  53. R. L. DeValois, M. A. Webster, K. K. DeValois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
    [CrossRef]
  54. A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
    [CrossRef]

2004

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

2002

K. L. Gunther, K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vision Res. 42, 1367–1378 (2002).
[CrossRef] [PubMed]

2001

H. Sun, J. Pokorny, V. C. Smith, “Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways,” J. Vision 1, 42–54 (2001).
[CrossRef]

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the Macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
[PubMed]

2000

J. Kremers, H. P.N. Scholl, H. Knau, T. T.J.M. Berendschot, T. Usui, L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitive and chromatic (green/red) contrast sensitivity?” Vision Res. 40, 613–628 (2000).
[CrossRef]

1999

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

1998

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

1997

B. Blakeslee, M. E. McCourt, “Similar mechanisms underlie simultaneous brightness contrast and grating induction,” Vision Res. 37, 2849–2869 (1997).
[CrossRef]

M. Kalloniatis, M. J. Pianta, “L and M cone input into spectral sensitivity functions: a reanalysis,” Vision Res. 37, 799–811 (1997).
[CrossRef] [PubMed]

M. Gur, D. M. Snodderly, “A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived,” Vision Res. 37, 377–382 (1997).
[CrossRef] [PubMed]

1996

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

T. J. Gawne, T. W. Kjaer, B. J. Richmond, “Latency: another potential code for feature binding in striate cortex,” J. Neurophysiol. 76, 1356–1360 (1996).
[PubMed]

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

A. F. Rossi, M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vision Res. 36, 1391–1398 (1996).
[CrossRef] [PubMed]

1995

D. G. Albrecht, “Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions,” Visual Neurosci. 12, 1191–1210 (1995).
[CrossRef]

D. H. Peterzell, J. S. Werner, P. S. Kaplan, “Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6- and 8-month-old human infants,” Vision Res. 35, 961–979 (1995).
[CrossRef] [PubMed]

1993

1992

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

1991

A. Stockman, D. I.A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

1990

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

1989

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

1988

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

1986

R. L. DeValois, M. A. Webster, K. K. DeValois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef]

1985

R. M. Boynton, R. T. Eskew, C. X. Olson, “Blue cones contribute to border distinctness,” Vision Res. 25, 1349–1352 (1985).
[CrossRef] [PubMed]

1983

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

J. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

H. Yaguchi, M. Ikeda, “Subadditivity and superadditivity in heterochromatic brightness matching,” Vision Res. 23, 1711–1718 (1983).
[CrossRef] [PubMed]

C. Ware, “Evidence for an independent luminance channel,” J. Opt. Soc. Am. 73, 1379–1382 (1983).
[CrossRef] [PubMed]

1980

1978

M. Ikeda, H. Shimozono, “Luminous efficiency functions determined by successive brightness matching,” J. Opt. Soc. Am. 68, 1767–1771 (1978).
[CrossRef]

R. M. Boynton, P. K. Kaiser, “Temporal analog of the minimally distinct border,” Vision Res. 18, 111–113 (1978).
[CrossRef] [PubMed]

1977

J. D. Conner, D. I.A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 698–699 (1977).
[CrossRef] [PubMed]

1976

L. Kerr, “Effect of chromatic contrast on stimulus brightness,” Vision Res. 16, 463–468 (1976).
[CrossRef] [PubMed]

1975

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

E. W. Yund, J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vision Res. 15, 917–929 (1975).
[CrossRef] [PubMed]

S. Magnussen, A. Glad, “Temporal frequency characteristics of spatial interaction in human vision,” Exp. Brain Res. 23, 519–528 (1975).
[CrossRef] [PubMed]

1974

L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
[CrossRef]

1973

P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
[CrossRef] [PubMed]

S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

1972

1969

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

1968

R. M. Boynton, P. K. Kaiser, “Vision: the additivity law made to work for heterochromatic photometry with bipartite fields,” Science 161, 366–368 (1968).
[CrossRef] [PubMed]

1966

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

1961

E. G. Heinemann, “The relation of apparent brightness to the threshold for differences in luminance,” J. Exp. Psychol. 61, 389–399 (1961).
[CrossRef] [PubMed]

1959

1955

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef] [PubMed]

1954

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

1948

H. deVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague, Neth.) 24, 199–212 (1948).

Aguilar, M.

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Albrecht, D. G.

D. G. Albrecht, “Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions,” Visual Neurosci. 12, 1191–1210 (1995).
[CrossRef]

Armington, J. C.

E. W. Yund, J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vision Res. 15, 917–929 (1975).
[CrossRef] [PubMed]

Belano, L. A.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

Berendschot, T. T.J.M.

Bieber, M. L.

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

Blakeslee, B.

B. Blakeslee, M. E. McCourt, “Similar mechanisms underlie simultaneous brightness contrast and grating induction,” Vision Res. 37, 2849–2869 (1997).
[CrossRef]

Boynton, R. M.

R. M. Boynton, R. T. Eskew, C. X. Olson, “Blue cones contribute to border distinctness,” Vision Res. 25, 1349–1352 (1985).
[CrossRef] [PubMed]

R. M. Boynton, P. K. Kaiser, “Temporal analog of the minimally distinct border,” Vision Res. 18, 111–113 (1978).
[CrossRef] [PubMed]

G. Wagner, R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972).
[CrossRef] [PubMed]

R. M. Boynton, P. K. Kaiser, “Vision: the additivity law made to work for heterochromatic photometry with bipartite fields,” Science 161, 366–368 (1968).
[CrossRef] [PubMed]

Charles, J. P.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

Chevreul, M. E.

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, Original English Translation 1854; republished in 1967 (Reinhold, 1839).

Conner, J. D.

J. D. Conner, D. I.A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 698–699 (1977).
[CrossRef] [PubMed]

D’Antona, A. D.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

DePriest, D. D.

A. Stockman, D. I.A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

DeValois, K. K.

R. L. DeValois, M. A. Webster, K. K. DeValois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef]

DeValois, R. L.

R. L. DeValois, M. A. Webster, K. K. DeValois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef]

deVries, H.

H. deVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague, Neth.) 24, 199–212 (1948).

Dobkins, K. R.

K. L. Gunther, K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vision Res. 42, 1367–1378 (2002).
[CrossRef] [PubMed]

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitive and chromatic (green/red) contrast sensitivity?” Vision Res. 40, 613–628 (2000).
[CrossRef]

Donley, N. J.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Eisner, A.

Eskew, R. T.

R. M. Boynton, R. T. Eskew, C. X. Olson, “Blue cones contribute to border distinctness,” Vision Res. 25, 1349–1352 (1985).
[CrossRef] [PubMed]

Gawne, T. J.

T. J. Gawne, T. W. Kjaer, B. J. Richmond, “Latency: another potential code for feature binding in striate cortex,” J. Neurophysiol. 76, 1356–1360 (1996).
[PubMed]

Glad, A.

S. Magnussen, A. Glad, “Temporal frequency characteristics of spatial interaction in human vision,” Exp. Brain Res. 23, 519–528 (1975).
[CrossRef] [PubMed]

Gunther, K. L.

K. L. Gunther, K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vision Res. 42, 1367–1378 (2002).
[CrossRef] [PubMed]

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitive and chromatic (green/red) contrast sensitivity?” Vision Res. 40, 613–628 (2000).
[CrossRef]

Gur, M.

M. Gur, D. M. Snodderly, “A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived,” Vision Res. 37, 377–382 (1997).
[CrossRef] [PubMed]

Guth, S. L.

S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Hahn, S.

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

Heinemann, E. G.

E. G. Heinemann, “The relation of apparent brightness to the threshold for differences in luminance,” J. Exp. Psychol. 61, 389–399 (1961).
[CrossRef] [PubMed]

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef] [PubMed]

Holliday, I.

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

Hubel, D. H.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Ikeda, M.

H. Yaguchi, M. Ikeda, “Subadditivity and superadditivity in heterochromatic brightness matching,” Vision Res. 23, 1711–1718 (1983).
[CrossRef] [PubMed]

M. Ikeda, H. Shimozono, “Luminous efficiency functions determined by successive brightness matching,” J. Opt. Soc. Am. 68, 1767–1771 (1978).
[CrossRef]

H. Yaguchi, M. Ikeda, “Contribution of opponent-colour channels to brightness,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 353–360.

Kaiser, P. K.

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

R. M. Boynton, P. K. Kaiser, “Temporal analog of the minimally distinct border,” Vision Res. 18, 111–113 (1978).
[CrossRef] [PubMed]

R. M. Boynton, P. K. Kaiser, “Vision: the additivity law made to work for heterochromatic photometry with bipartite fields,” Science 161, 366–368 (1968).
[CrossRef] [PubMed]

Kalloniatis, M.

M. Kalloniatis, M. J. Pianta, “L and M cone input into spectral sensitivity functions: a reanalysis,” Vision Res. 37, 799–811 (1997).
[CrossRef] [PubMed]

Kaplan, P. S.

D. H. Peterzell, J. S. Werner, P. S. Kaplan, “Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6- and 8-month-old human infants,” Vision Res. 35, 961–979 (1995).
[CrossRef] [PubMed]

Kerr, L.

L. Kerr, “Effect of chromatic contrast on stimulus brightness,” Vision Res. 16, 463–468 (1976).
[CrossRef] [PubMed]

Kinoshita, M.

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the Macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

Kjaer, T. W.

T. J. Gawne, T. W. Kjaer, B. J. Richmond, “Latency: another potential code for feature binding in striate cortex,” J. Neurophysiol. 76, 1356–1360 (1996).
[PubMed]

Knau, H.

Komatsu, H.

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the Macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

Kraft, J. M.

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

Kremers, J.

Lee, B. B.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

Levitt, J. B.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
[PubMed]

Lewis, W. G.

Lingelbach, B.

R. L. DeValois, M. A. Webster, K. K. DeValois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef]

Lodge, H. R.

MacLeod, D. I.A.

A. Stockman, D. I.A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

A. Eisner, D. I.A. MacLeod, “Blue sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
[CrossRef] [PubMed]

J. D. Conner, D. I.A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 698–699 (1977).
[CrossRef] [PubMed]

Magnussen, S.

S. Magnussen, A. Glad, “Temporal frequency characteristics of spatial interaction in human vision,” Exp. Brain Res. 23, 519–528 (1975).
[CrossRef] [PubMed]

Marks, L. E.

L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
[CrossRef]

Marrocco, R. T.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Martin, P. R.

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

McCourt, M. E.

B. Blakeslee, M. E. McCourt, “Similar mechanisms underlie simultaneous brightness contrast and grating induction,” Vision Res. 37, 2849–2869 (1997).
[CrossRef]

Miyahara, E.

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

Mollon, J. D.

Movshon, J. A.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
[PubMed]

Olson, C. X.

R. M. Boynton, R. T. Eskew, C. X. Olson, “Blue cones contribute to border distinctness,” Vision Res. 25, 1349–1352 (1985).
[CrossRef] [PubMed]

Paradiso, M. A.

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

A. F. Rossi, M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vision Res. 36, 1391–1398 (1996).
[CrossRef] [PubMed]

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

Peterzell, D. H.

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitive and chromatic (green/red) contrast sensitivity?” Vision Res. 40, 613–628 (2000).
[CrossRef]

D. H. Peterzell, J. S. Werner, P. S. Kaplan, “Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6- and 8-month-old human infants,” Vision Res. 35, 961–979 (1995).
[CrossRef] [PubMed]

Pianta, M. J.

M. Kalloniatis, M. J. Pianta, “L and M cone input into spectral sensitivity functions: a reanalysis,” Vision Res. 37, 799–811 (1997).
[CrossRef] [PubMed]

Pokorny, J.

H. Sun, J. Pokorny, V. C. Smith, “Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways,” J. Vision 1, 42–54 (2001).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Pugh, E. N.

J. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Richmond, B. J.

T. J. Gawne, T. W. Kjaer, B. J. Richmond, “Latency: another potential code for feature binding in striate cortex,” J. Neurophysiol. 76, 1356–1360 (1996).
[PubMed]

Rittenhouse, C. D.

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

Rossi, A. F.

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

A. F. Rossi, M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vision Res. 36, 1391–1398 (1996).
[CrossRef] [PubMed]

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

Scholl, H. P.N.

Schumer, R. A.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
[PubMed]

Shapiro, A. G.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

Sharpe, L. T.

Shear-Heyman, M.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

Sherman, S. M.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
[PubMed]

Shevell, S. K.

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

Shimozono, H.

Smith, J. B.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

Smith, V. C.

H. Sun, J. Pokorny, V. C. Smith, “Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways,” J. Vision 1, 42–54 (2001).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Snodderly, D. M.

M. Gur, D. M. Snodderly, “A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived,” Vision Res. 37, 377–382 (1997).
[CrossRef] [PubMed]

Spear, P. D.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
[PubMed]

Sperling, H. G.

Stiles, W. S.

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Stockman, A.

A. Stockman, D. I.A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Sun, H.

H. Sun, J. Pokorny, V. C. Smith, “Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways,” J. Vision 1, 42–54 (2001).
[CrossRef]

Thornton, J.

J. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Usui, T.

Valberg, A.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

Virsu, V.

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

Wagner, G.

Ware, C.

Webster, M. A.

M. A. Webster, J. D. Mollon, “Contrast adaptation dissociated different measures of luminance efficiency,” J. Opt. Soc. Am. A 10, 1332–1340 (1993).
[CrossRef] [PubMed]

R. L. DeValois, M. A. Webster, K. K. DeValois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef]

Werner, J. S.

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

D. H. Peterzell, J. S. Werner, P. S. Kaplan, “Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6- and 8-month-old human infants,” Vision Res. 35, 961–979 (1995).
[CrossRef] [PubMed]

Whittle, P.

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
[CrossRef] [PubMed]

Wiesel, T. N.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Yaguchi, H.

H. Yaguchi, M. Ikeda, “Subadditivity and superadditivity in heterochromatic brightness matching,” Vision Res. 23, 1711–1718 (1983).
[CrossRef] [PubMed]

H. Yaguchi, M. Ikeda, “Contribution of opponent-colour channels to brightness,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 353–360.

Yund, E. W.

E. W. Yund, J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vision Res. 15, 917–929 (1975).
[CrossRef] [PubMed]

Exp. Brain Res.

S. Magnussen, A. Glad, “Temporal frequency characteristics of spatial interaction in human vision,” Exp. Brain Res. 23, 519–528 (1975).
[CrossRef] [PubMed]

Genetica (The Hague, Neth.)

H. deVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague, Neth.) 24, 199–212 (1948).

J. Exp. Psychol.

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef] [PubMed]

E. G. Heinemann, “The relation of apparent brightness to the threshold for differences in luminance,” J. Exp. Psychol. 61, 389–399 (1961).
[CrossRef] [PubMed]

J. Neurophysiol.

M. Kinoshita, H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the Macaque primary visual cortex,” J. Neurophysiol. 86, 2559–2570 (2001).
[PubMed]

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

T. J. Gawne, T. W. Kjaer, B. J. Richmond, “Latency: another potential code for feature binding in striate cortex,” J. Neurophysiol. 76, 1356–1360 (1996).
[PubMed]

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
[PubMed]

J. Neurosci.

A. F. Rossi, M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex,” J. Neurosci. 19, 6145–6156 (1999).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol. (London)

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

J. Vision

H. Sun, J. Pokorny, V. C. Smith, “Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways,” J. Vision 1, 42–54 (2001).
[CrossRef]

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vision 4, 459–468 (2004).
[CrossRef]

Opt. Acta

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Science

J. D. Conner, D. I.A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 698–699 (1977).
[CrossRef] [PubMed]

J. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

R. M. Boynton, P. K. Kaiser, “Vision: the additivity law made to work for heterochromatic photometry with bipartite fields,” Science 161, 366–368 (1968).
[CrossRef] [PubMed]

A. F. Rossi, C. D. Rittenhouse, M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104–1107 (1996).
[CrossRef] [PubMed]

Vision Res.

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
[CrossRef] [PubMed]

L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
[CrossRef]

M. Kalloniatis, M. J. Pianta, “L and M cone input into spectral sensitivity functions: a reanalysis,” Vision Res. 37, 799–811 (1997).
[CrossRef] [PubMed]

L. Kerr, “Effect of chromatic contrast on stimulus brightness,” Vision Res. 16, 463–468 (1976).
[CrossRef] [PubMed]

M. Gur, D. M. Snodderly, “A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived,” Vision Res. 37, 377–382 (1997).
[CrossRef] [PubMed]

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

H. Yaguchi, M. Ikeda, “Subadditivity and superadditivity in heterochromatic brightness matching,” Vision Res. 23, 1711–1718 (1983).
[CrossRef] [PubMed]

E. W. Yund, J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vision Res. 15, 917–929 (1975).
[CrossRef] [PubMed]

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

R. M. Boynton, P. K. Kaiser, “Temporal analog of the minimally distinct border,” Vision Res. 18, 111–113 (1978).
[CrossRef] [PubMed]

B. Blakeslee, M. E. McCourt, “Similar mechanisms underlie simultaneous brightness contrast and grating induction,” Vision Res. 37, 2849–2869 (1997).
[CrossRef]

D. H. Peterzell, J. S. Werner, P. S. Kaplan, “Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6- and 8-month-old human infants,” Vision Res. 35, 961–979 (1995).
[CrossRef] [PubMed]

R. M. Boynton, R. T. Eskew, C. X. Olson, “Blue cones contribute to border distinctness,” Vision Res. 25, 1349–1352 (1985).
[CrossRef] [PubMed]

A. Stockman, D. I.A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

K. L. Gunther, K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vision Res. 42, 1367–1378 (2002).
[CrossRef] [PubMed]

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitive and chromatic (green/red) contrast sensitivity?” Vision Res. 40, 613–628 (2000).
[CrossRef]

M. A. Paradiso, S. Hahn, “Filling-in percepts produced by luminance modulation,” Vision Res. 36, 2657–2663 (1996).
[CrossRef] [PubMed]

A. F. Rossi, M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vision Res. 36, 1391–1398 (1996).
[CrossRef] [PubMed]

R. L. DeValois, M. A. Webster, K. K. DeValois, B. Lingelbach, “Temporal properties of brightness and color induction,” Vision Res. 26, 887–897 (1986).
[CrossRef]

Visual Neurosci.

D. G. Albrecht, “Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions,” Visual Neurosci. 12, 1191–1210 (1995).
[CrossRef]

Other

H. Yaguchi, M. Ikeda, “Contribution of opponent-colour channels to brightness,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 353–360.

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, Original English Translation 1854; republished in 1967 (Reinhold, 1839).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Stimuli used in these experiments. A. Alternating disk and annulus stimulus used in Experiments 1 and 2. Shown is the induction condition in which a red disk surrounded by a white annulus (time t 1 ) was alternated with a green disk surrounded by a black annulus (time t 2 ; referred to as the green–black condition). The red–black induction condition (not shown) consisted of the disk and annulus in the opposite phase relationship. The noninduction condition (not shown) consisted only of the central disk alternating between red and green. “Red” and “green” and “ t 1 ,” “ t 2 ,” are shown here to aid the reader and were not present in the actual stimulus. B. Red/green grating with black/white flankers stimulus used in Experiment 3. Shown is the induction condition in which the black stripes were spatially in phase with the green stripes (referred to as the green–black condition). The red–black induction condition (not shown) consisted of the black stripes spatially in phase with the red stripes. The noninduction condition (not shown) consisted only of the red/green grating. Some conditions used temporally reversing gratings. Some conditions used static stimuli (as shown here). Note that there were slight differences in the stimulus depending on whether the task was HFP (which used sinusoidal gratings), HBM (which used square wave gratings and a thin black line at the red/green borders), and MDB (which used square wave gratings, shown here). See text for further details.

Fig. 2
Fig. 2

(Color online) HFP data from Experiment 1. Plotted for each of the five subjects are HFP equality settings as a function of temporal frequency, for one noninduction condition (diamonds) and two induction conditions: red–black (squares) and green–black (circles). Equality settings are presented in terms of luminance contrast between the red and the green ( [ Lum red Lum green ] [ Lum red + Lum green ] ) , with zero denoting photometric equiluminance ( V λ ) , positive values denoting red-more-luminous-than-green and negative values denoting green-more-luminous-than-red. Error bars, often smaller than the symbols, represent ± 1 SEM (standard error of the mean).

Fig. 3
Fig. 3

(Color online) HFP and HBM Data from Experiment 2. A. Group mean HFP (at 4 Hz) and HBM equality settings (at 0.5 and 4 Hz) are plotted in terms of red/green luminance contrast for one noninduction condition (diamonds) and two induction conditions: red–black (squares) and green–black (circles). B. Group mean induction effects are plotted for the different conditions (see text for details). Error bars represent ± 1 SEM.

Fig. 4
Fig. 4

(Color online) HFP, HBM, and MDB data from Experiment 3. A. Group mean HFP (at 4 Hz), HBM (at 0 and 4 Hz), and MDB (at 0 and 4 Hz) equality settings are plotted in terms of red/green luminance contrast for one noninduction condition (diamonds) and two induction conditions: red–black (squares) and green–black (circles). B. Group mean induction effects are plotted for the different conditions (see text for details). Error bars represent ± 1 SEM.

Fig. 5
Fig. 5

Pearson r values for the magnitude of induction effects across different tasks/temporal frequencies: HFP 4 Hz, HBM 0 Hz, HBM 4 Hz, MDB 0 Hz, and MDB 4 Hz. Significant positive and negative correlations are depicted by speckled and gray boxes, respectively. Single asterisks denote p < 0.05 ; double asterisks denote p < 0.01 .

Fig. 6
Fig. 6

Hypothetical data producing negative correlation in the magnitude of induction between HBM and MDB. Shown are hypothetical induction values (in arbitrary units) within the L + M and the L M pathways for ten hypothetical subjects. This model assumes that the overall induction for each subject is the sum of induction within the pathways involved in the task. Accordingly, for HBM the overall induction is the sum of induction in both L + M and L M . For MDB the overall induction is the induction in the L + M pathway only. To account for our results (larger magnitude of induction for HBM than for MDB settings, and an inverse relationship between the magnitude of induction on the two tasks), we intentionally created an inverse relationship between the magnitude of induction occurring within the L + M and L M pathways. Plotted below is the resulting negative correlation between the magnitude of induction on the HBM and MDB tasks.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P L L r + P M M r = P L L g + P M M g ,
( P L L r + P M M r ) * X = ( P L L g + P M M g ) * Y ,

Metrics