Abstract

The effects of intensity on chromatic perceptive field size were investigated along the horizontal meridian at 10° temporal eccentricity by manipulating stimulus intensity from 0.3 to 3.3 log trolands. Following light adaptation, observers described the hue and saturation of monochromatic stimuli (440660nm, in 10nm steps) for a series of test sizes (0.098–3°) presented along the time period associated with the cone plateau of the dark-adaptation function. Perceptive field sizes of the four elemental hues (red, green, yellow, and blue) and the saturation component were estimated by three observers at each intensity level for each wavelength. In general, perceptive field sizes of blue and red are the smallest, and yellow and green are the largest. Furthermore, perceptive field sizes of all four hues decrease with increasing stimulus intensity, though the absolute change is largest for green and yellow. The decrease in size with increase in intensity cannot be completely explained in terms of saturation or rod signals and is likely, then, attributable to a cone-based mechanism.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ransom-Hogg, L. Spillmann, “Perceptive field size in fovea and periphery of the light- and dark-adapted retina,” Vision Res. 20, 221–228 (1980).
    [Crossref] [PubMed]
  2. L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
    [PubMed]
  3. T. Troscianko, “A given visual field location has a wide range of perceptive field sizes,” Vision Res. 22, 1363–1369 (1982).
    [Crossref] [PubMed]
  4. M. A. Pitts, L. J. Troup, V. J. Volbrecht, J. L. Nerger, “Chromatic perceptive field sizes change with intensity,” J. Vision 5 , 435–443 (2005).
  5. I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
    [Crossref] [PubMed]
  6. I. Abramov, J. Gordon, H. Chan, “Color appearance across the retina: effects of a white surround,” J. Opt. Soc. Am. A 9, 195–202 (1992).
    [Crossref] [PubMed]
  7. C. Angel, “The effect of rods on perceptive field size at 10  degrees eccentricity in the four retinal quadrants,” Ph.D. dissertation (Colorado State University, Fort Collins, 2004).
  8. D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
    [Crossref] [PubMed]
  9. W. Rushton, D. Powell, “The rhodopsin content and the visual threshold of human rods,” Vision Res. 12, 1073–1081 (1972).
    [Crossref] [PubMed]
  10. B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
    [Crossref] [PubMed]
  11. B. Stabell, U. Stabell, “Extra foveal spectral sensitivity during dark adaptation,” J. Opt. Soc. Am. 70, 81–86 (1980).
    [Crossref] [PubMed]
  12. B. Stabell, U. Stabell, “Rod and cone contributions to peripheral color vision,” Vision Res. 16, 1099–1104 (1976).
    [Crossref]
  13. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [Crossref] [PubMed]
  14. J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
    [Crossref]
  15. J. Gordon, I. Abramov, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
    [Crossref] [PubMed]
  16. I. Abramov, J. Gordon, “Color vision in the peripheral retina. I. Spectral sensitivity,” J. Opt. Soc. Am. 67, 195–205 (1977).
    [Crossref] [PubMed]
  17. T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the Rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
    [PubMed]
  18. C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Convergence of rod and cone signals in the cat retina,” J. Physiol. (London) 269, 297–318 (1977a).
  19. B. G. Cleland, C. Enroth-Cugell, “Quantitative aspects of sensitivity and summation in the cat retina,” J. Physiol. (London) 198, 17–38 (1968).
  20. C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Cone signals in the cat’s retina,” J. Physiol. (London) 269, 273–296 (1977b).
  21. M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
    [Crossref] [PubMed]
  22. J. Nerger, C. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
    [Crossref] [PubMed]
  23. R. Vimal, J. Pokorny, V. Smith, S. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [Crossref] [PubMed]
  24. D. Williams, D. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
    [Crossref] [PubMed]
  25. P. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
    [Crossref] [PubMed]
  26. C. Curcio, K. Sloan, R. Kalina, A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [Crossref] [PubMed]

1999 (1)

M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[Crossref] [PubMed]

1996 (1)

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[Crossref] [PubMed]

1994 (1)

J. Gordon, I. Abramov, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[Crossref] [PubMed]

1992 (2)

J. Nerger, C. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[Crossref] [PubMed]

I. Abramov, J. Gordon, H. Chan, “Color appearance across the retina: effects of a white surround,” J. Opt. Soc. Am. A 9, 195–202 (1992).
[Crossref] [PubMed]

1991 (1)

1990 (1)

C. Curcio, K. Sloan, R. Kalina, A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

1989 (1)

R. Vimal, J. Pokorny, V. Smith, S. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[Crossref] [PubMed]

1988 (1)

J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
[Crossref]

1987 (2)

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

P. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[Crossref] [PubMed]

1982 (1)

T. Troscianko, “A given visual field location has a wide range of perceptive field sizes,” Vision Res. 22, 1363–1369 (1982).
[Crossref] [PubMed]

1981 (1)

D. Williams, D. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

1980 (2)

A. Ransom-Hogg, L. Spillmann, “Perceptive field size in fovea and periphery of the light- and dark-adapted retina,” Vision Res. 20, 221–228 (1980).
[Crossref] [PubMed]

B. Stabell, U. Stabell, “Extra foveal spectral sensitivity during dark adaptation,” J. Opt. Soc. Am. 70, 81–86 (1980).
[Crossref] [PubMed]

1977 (1)

1976 (1)

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral color vision,” Vision Res. 16, 1099–1104 (1976).
[Crossref]

1972 (1)

W. Rushton, D. Powell, “The rhodopsin content and the visual threshold of human rods,” Vision Res. 12, 1073–1081 (1972).
[Crossref] [PubMed]

1968 (1)

B. G. Cleland, C. Enroth-Cugell, “Quantitative aspects of sensitivity and summation in the cat retina,” J. Physiol. (London) 198, 17–38 (1968).

1967 (1)

D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
[Crossref] [PubMed]

1966 (2)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the Rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Abramov, I.

Ahnelt, P.

P. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[Crossref] [PubMed]

Angel, C.

C. Angel, “The effect of rods on perceptive field size at 10  degrees eccentricity in the four retinal quadrants,” Ph.D. dissertation (Colorado State University, Fort Collins, 2004).

Chan, H.

Cicerone, C.

J. Nerger, C. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[Crossref] [PubMed]

Cleland, B. G.

B. G. Cleland, C. Enroth-Cugell, “Quantitative aspects of sensitivity and summation in the cat retina,” J. Physiol. (London) 198, 17–38 (1968).

Curcio, C.

C. Curcio, K. Sloan, R. Kalina, A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Enroth-Cugell, C.

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Cone signals in the cat’s retina,” J. Physiol. (London) 269, 273–296 (1977b).

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Convergence of rod and cone signals in the cat retina,” J. Physiol. (London) 269, 297–318 (1977a).

B. G. Cleland, C. Enroth-Cugell, “Quantitative aspects of sensitivity and summation in the cat retina,” J. Physiol. (London) 198, 17–38 (1968).

Gordon, J.

Hawken, M. J.

M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[Crossref] [PubMed]

Hayhoe, M.

D. Williams, D. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

Hendrickson, A.

C. Curcio, K. Sloan, R. Kalina, A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Hertz, B. G.

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Cone signals in the cat’s retina,” J. Physiol. (London) 269, 273–296 (1977b).

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Convergence of rod and cone signals in the cat retina,” J. Physiol. (London) 269, 297–318 (1977a).

Hubel, D. H.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the Rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Hurvich, L. M.

D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
[Crossref] [PubMed]

Jameson, D.

D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
[Crossref] [PubMed]

Kalina, R.

C. Curcio, K. Sloan, R. Kalina, A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Kolb, H.

P. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[Crossref] [PubMed]

Lennie, P.

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Cone signals in the cat’s retina,” J. Physiol. (London) 269, 273–296 (1977b).

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Convergence of rod and cone signals in the cat retina,” J. Physiol. (London) 269, 297–318 (1977a).

MacLeod, D.

D. Williams, D. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

Nerger, J.

J. Nerger, C. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[Crossref] [PubMed]

Nerger, J. L.

M. A. Pitts, L. J. Troup, V. J. Volbrecht, J. L. Nerger, “Chromatic perceptive field sizes change with intensity,” J. Vision 5 , 435–443 (2005).

Oehler, R.

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

Pflug, R.

P. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[Crossref] [PubMed]

Pitts, M. A.

M. A. Pitts, L. J. Troup, V. J. Volbrecht, J. L. Nerger, “Chromatic perceptive field sizes change with intensity,” J. Vision 5 , 435–443 (2005).

Pokorny, J.

R. Vimal, J. Pokorny, V. Smith, S. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[Crossref] [PubMed]

Powell, D.

W. Rushton, D. Powell, “The rhodopsin content and the visual threshold of human rods,” Vision Res. 12, 1073–1081 (1972).
[Crossref] [PubMed]

Ransom-Hogg, A.

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

A. Ransom-Hogg, L. Spillmann, “Perceptive field size in fovea and periphery of the light- and dark-adapted retina,” Vision Res. 20, 221–228 (1980).
[Crossref] [PubMed]

Ringach, D. L.

M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[Crossref] [PubMed]

Rushton, W.

W. Rushton, D. Powell, “The rhodopsin content and the visual threshold of human rods,” Vision Res. 12, 1073–1081 (1972).
[Crossref] [PubMed]

Sceniak, M. P.

M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[Crossref] [PubMed]

Shapley, R.

M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[Crossref] [PubMed]

Shevell, S.

R. Vimal, J. Pokorny, V. Smith, S. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[Crossref] [PubMed]

Sloan, K.

C. Curcio, K. Sloan, R. Kalina, A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Smith, V.

R. Vimal, J. Pokorny, V. Smith, S. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[Crossref] [PubMed]

Spillmann, L.

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

A. Ransom-Hogg, L. Spillmann, “Perceptive field size in fovea and periphery of the light- and dark-adapted retina,” Vision Res. 20, 221–228 (1980).
[Crossref] [PubMed]

Stabell, B.

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[Crossref] [PubMed]

B. Stabell, U. Stabell, “Extra foveal spectral sensitivity during dark adaptation,” J. Opt. Soc. Am. 70, 81–86 (1980).
[Crossref] [PubMed]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral color vision,” Vision Res. 16, 1099–1104 (1976).
[Crossref]

Stabell, U.

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[Crossref] [PubMed]

B. Stabell, U. Stabell, “Extra foveal spectral sensitivity during dark adaptation,” J. Opt. Soc. Am. 70, 81–86 (1980).
[Crossref] [PubMed]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral color vision,” Vision Res. 16, 1099–1104 (1976).
[Crossref]

Troscianko, T.

T. Troscianko, “A given visual field location has a wide range of perceptive field sizes,” Vision Res. 22, 1363–1369 (1982).
[Crossref] [PubMed]

Troup, L. J.

M. A. Pitts, L. J. Troup, V. J. Volbrecht, J. L. Nerger, “Chromatic perceptive field sizes change with intensity,” J. Vision 5 , 435–443 (2005).

Vimal, R.

R. Vimal, J. Pokorny, V. Smith, S. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[Crossref] [PubMed]

Volbrecht, V. J.

M. A. Pitts, L. J. Troup, V. J. Volbrecht, J. L. Nerger, “Chromatic perceptive field sizes change with intensity,” J. Vision 5 , 435–443 (2005).

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Wiesel, T. N.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the Rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Williams, D.

D. Williams, D. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

Color Res. Appl. (1)

J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
[Crossref]

Hum. Neurobiol. (1)

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

J. Comp. Neurol. (2)

P. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[Crossref] [PubMed]

C. Curcio, K. Sloan, R. Kalina, A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

J. Neurophysiol. (1)

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the Rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (3)

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Convergence of rod and cone signals in the cat retina,” J. Physiol. (London) 269, 297–318 (1977a).

B. G. Cleland, C. Enroth-Cugell, “Quantitative aspects of sensitivity and summation in the cat retina,” J. Physiol. (London) 198, 17–38 (1968).

C. Enroth-Cugell, B. G. Hertz, P. Lennie, “Cone signals in the cat’s retina,” J. Physiol. (London) 269, 273–296 (1977b).

Nat. Neurosci. (1)

M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[Crossref] [PubMed]

Percept. Psychophys. (1)

J. Gordon, I. Abramov, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[Crossref] [PubMed]

Vision Res. (10)

A. Ransom-Hogg, L. Spillmann, “Perceptive field size in fovea and periphery of the light- and dark-adapted retina,” Vision Res. 20, 221–228 (1980).
[Crossref] [PubMed]

J. Nerger, C. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[Crossref] [PubMed]

R. Vimal, J. Pokorny, V. Smith, S. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[Crossref] [PubMed]

D. Williams, D. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

T. Troscianko, “A given visual field location has a wide range of perceptive field sizes,” Vision Res. 22, 1363–1369 (1982).
[Crossref] [PubMed]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral color vision,” Vision Res. 16, 1099–1104 (1976).
[Crossref]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
[Crossref] [PubMed]

W. Rushton, D. Powell, “The rhodopsin content and the visual threshold of human rods,” Vision Res. 12, 1073–1081 (1972).
[Crossref] [PubMed]

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[Crossref] [PubMed]

Other (2)

M. A. Pitts, L. J. Troup, V. J. Volbrecht, J. L. Nerger, “Chromatic perceptive field sizes change with intensity,” J. Vision 5 , 435–443 (2005).

C. Angel, “The effect of rods on perceptive field size at 10  degrees eccentricity in the four retinal quadrants,” Ph.D. dissertation (Colorado State University, Fort Collins, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hue-naming functions comparing bleach (open symbols) and no-bleach (solid symbols) conditions for a 1° stimulus measured in the fovea at (a) and (b) the lowest and (c) and (d) the highest intensity levels. Data have been scaled to saturation. Error bars represent ± 1 standard error of the mean based on variability among observers.

Fig. 2
Fig. 2

Mean scaled hue values plotted as a function of stimulus size and fitted with the Michaelis–Menten growth function. For illustrative purposes a single wavelength was chosen to represent each hue. Error bars represent ± 1 standard error of the mean.

Fig. 3
Fig. 3

(a)–(d) Perceptive field size plotted as a function of stimulus intensity for the four elemental hue terms. The symbols and dashed curves within each panel show data from the four individual wavelengths, and the solid curve represents the mean perceptive field size of four wavelengths.

Fig. 4
Fig. 4

Perceptive field size plotted as a function of hue for the four elemental hues. Different symbols and curves denote the four intensity levels.

Fig. 5
Fig. 5

Saturation responses for 1° stimuli plotted as a function of wavelength for all four intensities.

Fig. 6
Fig. 6

Perceptive field sizes of saturation compared with perceptive field sizes of green and yellow at the two lower intensity levels.

Tables (1)

Tables Icon

Table 1 Perceptive Field Sizes (Degrees of Visual Angle) Taken from this Study under Rod-Bleach Conditions and Compared with Those Taken under No-Bleach Conditions a

Metrics