Abstract

Luminance-dependent change in color appearance—the Bezold–Brücke effect—was investigated in protanopes and related to that in normal trichromats. Spectral lights were presented at six luminance levels covering mesopic, low, and high photopic vision—across three log steps from 0.76to760Td. To judge color appearance, a variant of the color-naming method was used with four primary basic color terms and a “White” response. This modification enabled us to examine apparent saturation changes along with the Bezold–Brücke hue shift. Color-naming frequency functions were acquired across ten presentations of each stimulus. Since protanopes name colors idiosyncratically, changes in color appearance cannot be quantified directly from the color-naming functions. To circumvent the difficulty, these functions were transformed into color similarity measures for analysis with multidimensional scaling purported to reconstruct individual color spaces. In these, luminance-dependent shifts in color appearance were represented by means of geometric displacements. We found that for normal trichromats, shifts measured in this way agreed with those derived in our study directly, and with the hue shifts reported in earlier studies. For protanopes, contrary to some models of dichromatic vision, changes in color appearance are significant and indicate superimposed shifts in hue and saturation. The results obtained for normal trichromats, especially for protanopes, imply that nonlinearity in the yellow–blue opponent system is insufficient to explain the Bezold–Brücke effect, given the nature of the saturation shift and the demonstrated divergence between unique hues and invariant hues.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, (1873);W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, 221–247 (1873).
    [CrossRef]
  2. M. E. Brücke, “Über einige Empfindungen im Gebiet der Sehnerven,” Sitz. Ber. d. K. K. Akad. d. Wissensch. Math. Nat. Wiss. Classe 77, 39–71 (1878).
  3. D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282–313 (1931).
  4. A. Valberg, B. Lange-Malecki, T. Seim, “Colour changes as a function of luminance,” Perception 20, 655–668 (1991).
    [CrossRef]
  5. R. W. G. Hunt, “Hue shifts in unrelated and related colours,” Color Res. Appl. 14, 235–239 (1989).
    [CrossRef]
  6. R. W. Pridmore, “Bezold–Brücke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colours,” Vision Res. 39, 3873–3891 (1999).
    [CrossRef]
  7. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity: II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [CrossRef] [PubMed]
  8. A. Valberg, T. Seim, “On physiological basis of higher colour metrics,” in From Pigments to Perception, A. Valberg and B. Lee, eds. (Plenum, 1991), pp. 425–436.
    [CrossRef]
  9. A. Valberg, “Unique hues: an old problem for a new generation,” Vision Res. 41, 1645–1657 (2001).
    [CrossRef] [PubMed]
  10. M. Ayama, T. Nakatsue, P. E. Kaiser, “Constant hue loci of unique and balanced hues at 10, 100, and 1000 td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987).
    [CrossRef] [PubMed]
  11. D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
    [CrossRef]
  12. D. M. Purdy, “The Bezold–Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313–315 (1937).
    [CrossRef]
  13. A. L. Nagy, “Short-flash Bezold–Brücke hue shifts,” Vision Res. 20, 361–368 (1980).
    [CrossRef]
  14. R. S. Savoie, “Bezold–Brücke effect and visual non-linearity,” J. Opt. Soc. Am. 63, 1253–1261 (1973).
    [CrossRef] [PubMed]
  15. J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–352 (1975).
    [CrossRef] [PubMed]
  16. S. Coren, B. Keith, “Bezold–Brücke effect: pigment or neural location?” J. Opt. Soc. Am. 60, 559–562 (1970).
    [CrossRef] [PubMed]
  17. P. L. Walraven, “On the Bezold–Brücke phenomenon,” J. Opt. Soc. Am. 51, 1113–1116 (1961).
    [CrossRef] [PubMed]
  18. S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “Differences in peripheral hue perception as revealed by the Bezold–Brücke hue shift,” Invest. Ophthalmol. Visual Sci. 41, S806 (2000).
  19. U. Stabell, B. Stabell, “Bezold–Brücke phenomenon of the extrafoveal retina,” J. Opt. Soc. Am. 69, 1648–1652 (1979).
    [CrossRef] [PubMed]
  20. G. H. Jacobs, T. C. Wascher, “Bezold–Brücke shift: Further measurements,” J. Opt. Soc. Am. 57, 1115–1167 (1967).
    [CrossRef]
  21. R. M. Boynton, W. Schafer, M. E. Neun, “Hue-wavelength relation measured by color-naming for three retinal locations,” Science 146, 83–86 (1964).
    [CrossRef]
  22. I. Abramov, J. Gordon, “Color appearance: On seeing red–or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
    [CrossRef]
  23. J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
    [CrossRef]
  24. R. M. Boynton, J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
    [CrossRef]
  25. K. Knoblauch, B. R. Wooten, “Intensity invariance of the achromatic point in sex-linked dichromacy,” Doc. Ophthalmol. Proc. Ser. 33, 287–294 (1982).
  26. S. M. Luria, “Color name as a function of stimulus intensity and duration,” Am. J. Psychol. 80, 14–27 (1967).
    [CrossRef] [PubMed]
  27. G. V. Paramei, “Color space of normally sighted and color-deficient observers reconstructed from color naming,” Psychol. Sci. 7, 311–317 (1996).
    [CrossRef]
  28. G. V. Paramei, D. L. Bimler, C. R. Cavonius, “Effects of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
    [CrossRef]
  29. H. M. O. Scheibner, R. M. Boynton, “Residual red-green discrimination in dichromats,” J. Opt. Soc. Am. 58, 1151–1158 (1968).
    [CrossRef] [PubMed]
  30. V. C. Smith, J. Pokorny, R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115–131 (1973).
    [CrossRef] [PubMed]
  31. D. Jameson, L. M. Hurvich, “Dichromatic color language: “Reds” and “Greens” don’t look alike but their colors do,” Sens Processes 2, 146–155 (1978).
    [PubMed]
  32. R. N. Shepard, J. D. Carroll, “Parametric representation of nonlinear data structures,” in Multivariate Analysis, P. R. Krishnaiah, ed. (Academic, 1966), pp. 561–592.
  33. Ch. A. Izmailov, E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249–259 (1991).
    [CrossRef]
  34. E. N. Sokolov, Ch. A. Izmailov, B. Schönebeck, “Vergleichende Experimente zur mehrdimensionalen Skalierung subjektiver Farbunterscheide und ihrer internen sphärischen Repräsentation,” Z. Psychol. 190, 275–293 (1982).
  35. E. N. Sokolov, Ch. A. Izmailov, “The conceptual reflex arc: a model of neural processing as developed for colour vision,” in Modern Issues in Perception, H.-G. Geissler, ed. (VEB Deutscher Verlag der Wissenschaft, 1983), pp. 192–216.
    [CrossRef]
  36. D. Bimler, G. V. Paramei, “Luminance-dependent hue shift in protanopes,” Visual Neurosci. 21, 403–407 (2004).
    [CrossRef]
  37. L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/75).
  38. R. W. Massof, J. E. Bailey, “Achromatic points in protanopes and deuteranopes,” Vision Res. 16, 53–57 (1976).
    [CrossRef] [PubMed]
  39. I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).
  40. R. T. Kintz, J. A. Parker, R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
    [CrossRef]
  41. J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 28, 1–27 (1964).
    [CrossRef]
  42. S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
    [CrossRef]
  43. S. L. Buck, R. Knight, J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000).
    [CrossRef] [PubMed]
  44. G. V. Paramei, D. Bimler, “Vector coding underlying individual transformations of a color space,” in Vision: The Approach of Biophysics and Neurosciences (Series of Biophysics and Biocybernetics, Vol. 11), C. Musio, ed. (World Scientific, 2001), pp. 429–436.
    [CrossRef]
  45. R. E. MacLaury, “From brightness to hue: An explanatory model of color-category evolution,” Curr. Anthropol. 33, 137–186 with Discussion (1992).
    [CrossRef]
  46. C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
    [CrossRef] [PubMed]
  47. M. J. McMahon, D. I. A. MacLeod, “Dichromatic color vision at very high light levels: Red/Green discrimination using the blue-sensitive mechanisms,” Vision Res. 38, 973–983 (1998).
    [CrossRef] [PubMed]
  48. L. C. Thomson, P. W. Trezona, “The variations of hue discrimination with change of luminance level,” J. Physiol. (London) 114, 98–106 (1951).
  49. J. Walraven, J. Werner, “The invariance of unique white: A possible implication for normalizing the cone action spectra,” Vision Res. 31, 2185–2193 (1991).
    [CrossRef]
  50. Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color processes,” Vision Res. 24, 1897–1904 (1984).
    [CrossRef]
  51. R. G. Kuehni, “Variability in unique hue selection: A surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
    [CrossRef]
  52. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
    [CrossRef] [PubMed]
  53. R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
    [CrossRef] [PubMed]
  54. K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237–246 (1991).
    [CrossRef] [PubMed]
  55. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
    [CrossRef] [PubMed]
  56. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  57. K. A. Jameson, “Why GRUE? An interpoint-distance model analysis of color categories,” Cross.-Cult. Res. 39 (2005; in press).
  58. M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in Anthropology of Color: Interdisciplinary Multilevel Modeling, R. E. MacLaury, G. V. Paramei, and D. Dedrick, eds. (to be published).
  59. S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “A new look at the Bezold–Brücke hue shift in the peripheral retina,” Vision Res. 44, 1891–1906 (2004).
    [CrossRef]

2004 (3)

D. Bimler, G. V. Paramei, “Luminance-dependent hue shift in protanopes,” Visual Neurosci. 21, 403–407 (2004).
[CrossRef]

R. G. Kuehni, “Variability in unique hue selection: A surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “A new look at the Bezold–Brücke hue shift in the peripheral retina,” Vision Res. 44, 1891–1906 (2004).
[CrossRef]

2001 (1)

A. Valberg, “Unique hues: an old problem for a new generation,” Vision Res. 41, 1645–1657 (2001).
[CrossRef] [PubMed]

2000 (5)

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “Differences in peripheral hue perception as revealed by the Bezold–Brücke hue shift,” Invest. Ophthalmol. Visual Sci. 41, S806 (2000).

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

S. L. Buck, R. Knight, J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000).
[CrossRef] [PubMed]

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

1999 (1)

R. W. Pridmore, “Bezold–Brücke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colours,” Vision Res. 39, 3873–3891 (1999).
[CrossRef]

1998 (3)

M. J. McMahon, D. I. A. MacLeod, “Dichromatic color vision at very high light levels: Red/Green discrimination using the blue-sensitive mechanisms,” Vision Res. 38, 973–983 (1998).
[CrossRef] [PubMed]

G. V. Paramei, D. L. Bimler, C. R. Cavonius, “Effects of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

1997 (1)

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

1996 (1)

G. V. Paramei, “Color space of normally sighted and color-deficient observers reconstructed from color naming,” Psychol. Sci. 7, 311–317 (1996).
[CrossRef]

1994 (1)

I. Abramov, J. Gordon, “Color appearance: On seeing red–or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

1993 (1)

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

1992 (1)

R. E. MacLaury, “From brightness to hue: An explanatory model of color-category evolution,” Curr. Anthropol. 33, 137–186 with Discussion (1992).
[CrossRef]

1991 (4)

Ch. A. Izmailov, E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249–259 (1991).
[CrossRef]

J. Walraven, J. Werner, “The invariance of unique white: A possible implication for normalizing the cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef]

K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237–246 (1991).
[CrossRef] [PubMed]

A. Valberg, B. Lange-Malecki, T. Seim, “Colour changes as a function of luminance,” Perception 20, 655–668 (1991).
[CrossRef]

1989 (1)

R. W. G. Hunt, “Hue shifts in unrelated and related colours,” Color Res. Appl. 14, 235–239 (1989).
[CrossRef]

1988 (1)

J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
[CrossRef]

1987 (2)

1984 (1)

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color processes,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

1982 (1)

K. Knoblauch, B. R. Wooten, “Intensity invariance of the achromatic point in sex-linked dichromacy,” Doc. Ophthalmol. Proc. Ser. 33, 287–294 (1982).

1980 (1)

A. L. Nagy, “Short-flash Bezold–Brücke hue shifts,” Vision Res. 20, 361–368 (1980).
[CrossRef]

1979 (1)

1978 (1)

D. Jameson, L. M. Hurvich, “Dichromatic color language: “Reds” and “Greens” don’t look alike but their colors do,” Sens Processes 2, 146–155 (1978).
[PubMed]

1976 (1)

R. W. Massof, J. E. Bailey, “Achromatic points in protanopes and deuteranopes,” Vision Res. 16, 53–57 (1976).
[CrossRef] [PubMed]

1975 (2)

J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–352 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity: II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

1974 (1)

L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/75).

1973 (2)

V. C. Smith, J. Pokorny, R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115–131 (1973).
[CrossRef] [PubMed]

R. S. Savoie, “Bezold–Brücke effect and visual non-linearity,” J. Opt. Soc. Am. 63, 1253–1261 (1973).
[CrossRef] [PubMed]

1970 (1)

1969 (1)

R. T. Kintz, J. A. Parker, R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[CrossRef]

1968 (1)

1967 (2)

G. H. Jacobs, T. C. Wascher, “Bezold–Brücke shift: Further measurements,” J. Opt. Soc. Am. 57, 1115–1167 (1967).
[CrossRef]

S. M. Luria, “Color name as a function of stimulus intensity and duration,” Am. J. Psychol. 80, 14–27 (1967).
[CrossRef] [PubMed]

1965 (1)

1964 (2)

J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 28, 1–27 (1964).
[CrossRef]

R. M. Boynton, W. Schafer, M. E. Neun, “Hue-wavelength relation measured by color-naming for three retinal locations,” Science 146, 83–86 (1964).
[CrossRef]

1961 (1)

1951 (1)

L. C. Thomson, P. W. Trezona, “The variations of hue discrimination with change of luminance level,” J. Physiol. (London) 114, 98–106 (1951).

1937 (1)

D. M. Purdy, “The Bezold–Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313–315 (1937).
[CrossRef]

1931 (2)

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282–313 (1931).

1873 (1)

W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, (1873);W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, 221–247 (1873).
[CrossRef]

Abramov, I.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

I. Abramov, J. Gordon, “Color appearance: On seeing red–or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
[CrossRef]

Akilov, V.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

Ayama, M.

Babiy, M.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

Bailey, J. E.

R. W. Massof, J. E. Bailey, “Achromatic points in protanopes and deuteranopes,” Vision Res. 16, 53–57 (1976).
[CrossRef] [PubMed]

Bakis, G.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

Bechtold, J.

S. L. Buck, R. Knight, J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000).
[CrossRef] [PubMed]

Bimler, D.

D. Bimler, G. V. Paramei, “Luminance-dependent hue shift in protanopes,” Visual Neurosci. 21, 403–407 (2004).
[CrossRef]

G. V. Paramei, D. Bimler, “Vector coding underlying individual transformations of a color space,” in Vision: The Approach of Biophysics and Neurosciences (Series of Biophysics and Biocybernetics, Vol. 11), C. Musio, ed. (World Scientific, 2001), pp. 429–436.
[CrossRef]

Bimler, D. L.

G. V. Paramei, D. L. Bimler, C. R. Cavonius, “Effects of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

Boynton, R. M.

R. T. Kintz, J. A. Parker, R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[CrossRef]

H. M. O. Scheibner, R. M. Boynton, “Residual red-green discrimination in dichromats,” J. Opt. Soc. Am. 58, 1151–1158 (1968).
[CrossRef] [PubMed]

R. M. Boynton, J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
[CrossRef]

R. M. Boynton, W. Schafer, M. E. Neun, “Hue-wavelength relation measured by color-naming for three retinal locations,” Science 146, 83–86 (1964).
[CrossRef]

Brücke, M. E.

M. E. Brücke, “Über einige Empfindungen im Gebiet der Sehnerven,” Sitz. Ber. d. K. K. Akad. d. Wissensch. Math. Nat. Wiss. Classe 77, 39–71 (1878).

Buck, S. L.

S. L. Buck, R. Knight, J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000).
[CrossRef] [PubMed]

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Carroll, J. D.

R. N. Shepard, J. D. Carroll, “Parametric representation of nonlinear data structures,” in Multivariate Analysis, P. R. Krishnaiah, ed. (Academic, 1966), pp. 561–592.

Cavonius, C. R.

G. V. Paramei, D. L. Bimler, C. R. Cavonius, “Effects of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

Cicerone, C. M.

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity: II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

Cohen, J. D.

J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–352 (1975).
[CrossRef] [PubMed]

Coren, S.

Cottaris, N. P.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

De Valois, K. K.

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

Ejima, Y.

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color processes,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

Elfar, S. D.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

Fowler, G.

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Fuld, K.

K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237–246 (1991).
[CrossRef] [PubMed]

Gordon, J.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

I. Abramov, J. Gordon, “Color appearance: On seeing red–or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
[CrossRef]

R. M. Boynton, J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
[CrossRef]

Hunt, B.

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Hunt, R. W. G.

R. W. G. Hunt, “Hue shifts in unrelated and related colours,” Color Res. Appl. 14, 235–239 (1989).
[CrossRef]

Hurvich, L. M.

D. Jameson, L. M. Hurvich, “Dichromatic color language: “Reds” and “Greens” don’t look alike but their colors do,” Sens Processes 2, 146–155 (1978).
[PubMed]

L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/75).

Ilyusha, S.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

Imhoff, S. M.

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “A new look at the Bezold–Brücke hue shift in the peripheral retina,” Vision Res. 44, 1891–1906 (2004).
[CrossRef]

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “Differences in peripheral hue perception as revealed by the Bezold–Brücke hue shift,” Invest. Ophthalmol. Visual Sci. 41, S806 (2000).

Izmailov, Ch. A.

Ch. A. Izmailov, E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249–259 (1991).
[CrossRef]

E. N. Sokolov, Ch. A. Izmailov, B. Schönebeck, “Vergleichende Experimente zur mehrdimensionalen Skalierung subjektiver Farbunterscheide und ihrer internen sphärischen Repräsentation,” Z. Psychol. 190, 275–293 (1982).

E. N. Sokolov, Ch. A. Izmailov, “The conceptual reflex arc: a model of neural processing as developed for colour vision,” in Modern Issues in Perception, H.-G. Geissler, ed. (VEB Deutscher Verlag der Wissenschaft, 1983), pp. 192–216.
[CrossRef]

Jacobs, G. H.

Jameson, D.

D. Jameson, L. M. Hurvich, “Dichromatic color language: “Reds” and “Greens” don’t look alike but their colors do,” Sens Processes 2, 146–155 (1978).
[PubMed]

L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/75).

Jameson, K. A.

K. A. Jameson, “Why GRUE? An interpoint-distance model analysis of color categories,” Cross.-Cult. Res. 39 (2005; in press).

Kaiser, P. E.

Kay, P.

M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in Anthropology of Color: Interdisciplinary Multilevel Modeling, R. E. MacLaury, G. V. Paramei, and D. Dedrick, eds. (to be published).

Keith, B.

Khamermesh, K.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

Kintz, R. T.

R. T. Kintz, J. A. Parker, R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[CrossRef]

Knight, R.

S. L. Buck, R. Knight, J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000).
[CrossRef] [PubMed]

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Knoblauch, K.

K. Knoblauch, B. R. Wooten, “Intensity invariance of the achromatic point in sex-linked dichromacy,” Doc. Ophthalmol. Proc. Ser. 33, 287–294 (1982).

Krantz, D. H.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity: II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

Kruskal, J. B.

J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 28, 1–27 (1964).
[CrossRef]

Kuehni, R. G.

R. G. Kuehni, “Variability in unique hue selection: A surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, T. Seim, “Colour changes as a function of luminance,” Perception 20, 655–668 (1991).
[CrossRef]

Larimer, J.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity: II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

Luria, S. M.

S. M. Luria, “Color name as a function of stimulus intensity and duration,” Am. J. Psychol. 80, 14–27 (1967).
[CrossRef] [PubMed]

MacLaury, R. E.

R. E. MacLaury, “From brightness to hue: An explanatory model of color-category evolution,” Curr. Anthropol. 33, 137–186 with Discussion (1992).
[CrossRef]

MacLeod, D. I. A.

M. J. McMahon, D. I. A. MacLeod, “Dichromatic color vision at very high light levels: Red/Green discrimination using the blue-sensitive mechanisms,” Vision Res. 38, 973–983 (1998).
[CrossRef] [PubMed]

Mahon, L. E.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

Malkoc, G.

Massof, R. W.

R. W. Massof, J. E. Bailey, “Achromatic points in protanopes and deuteranopes,” Vision Res. 16, 53–57 (1976).
[CrossRef] [PubMed]

McMahon, M. J.

M. J. McMahon, D. I. A. MacLeod, “Dichromatic color vision at very high light levels: Red/Green discrimination using the blue-sensitive mechanisms,” Vision Res. 38, 973–983 (1998).
[CrossRef] [PubMed]

Miyahara, E.

Nagy, A. L.

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

A. L. Nagy, “Short-flash Bezold–Brücke hue shifts,” Vision Res. 20, 361–368 (1980).
[CrossRef]

Nakatsue, T.

Nerger, J. L.

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “A new look at the Bezold–Brücke hue shift in the peripheral retina,” Vision Res. 44, 1891–1906 (2004).
[CrossRef]

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “Differences in peripheral hue perception as revealed by the Bezold–Brücke hue shift,” Invest. Ophthalmol. Visual Sci. 41, S806 (2000).

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

Neun, M. E.

R. M. Boynton, W. Schafer, M. E. Neun, “Hue-wavelength relation measured by color-naming for three retinal locations,” Science 146, 83–86 (1964).
[CrossRef]

Paramei, G. V.

D. Bimler, G. V. Paramei, “Luminance-dependent hue shift in protanopes,” Visual Neurosci. 21, 403–407 (2004).
[CrossRef]

G. V. Paramei, D. L. Bimler, C. R. Cavonius, “Effects of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

G. V. Paramei, “Color space of normally sighted and color-deficient observers reconstructed from color naming,” Psychol. Sci. 7, 311–317 (1996).
[CrossRef]

G. V. Paramei, D. Bimler, “Vector coding underlying individual transformations of a color space,” in Vision: The Approach of Biophysics and Neurosciences (Series of Biophysics and Biocybernetics, Vol. 11), C. Musio, ed. (World Scientific, 2001), pp. 429–436.
[CrossRef]

Parker, J. A.

R. T. Kintz, J. A. Parker, R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[CrossRef]

Pokorny, J.

V. C. Smith, J. Pokorny, R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115–131 (1973).
[CrossRef] [PubMed]

Pridmore, R. W.

R. W. Pridmore, “Bezold–Brücke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colours,” Vision Res. 39, 3873–3891 (1999).
[CrossRef]

Purdy, D. M.

D. M. Purdy, “The Bezold–Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313–315 (1937).
[CrossRef]

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282–313 (1931).

Raker, V. E.

Savoie, R. S.

Schafer, W.

R. M. Boynton, W. Schafer, M. E. Neun, “Hue-wavelength relation measured by color-naming for three retinal locations,” Science 146, 83–86 (1964).
[CrossRef]

Scheibner, H. M. O.

Schönebeck, B.

E. N. Sokolov, Ch. A. Izmailov, B. Schönebeck, “Vergleichende Experimente zur mehrdimensionalen Skalierung subjektiver Farbunterscheide und ihrer internen sphärischen Repräsentation,” Z. Psychol. 190, 275–293 (1982).

Seim, T.

A. Valberg, B. Lange-Malecki, T. Seim, “Colour changes as a function of luminance,” Perception 20, 655–668 (1991).
[CrossRef]

A. Valberg, T. Seim, “On physiological basis of higher colour metrics,” in From Pigments to Perception, A. Valberg and B. Lee, eds. (Plenum, 1991), pp. 425–436.
[CrossRef]

Shepard, R. N.

R. N. Shepard, J. D. Carroll, “Parametric representation of nonlinear data structures,” in Multivariate Analysis, P. R. Krishnaiah, ed. (Academic, 1966), pp. 561–592.

Smith, V. C.

V. C. Smith, J. Pokorny, R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115–131 (1973).
[CrossRef] [PubMed]

Sokolov, E. N.

Ch. A. Izmailov, E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249–259 (1991).
[CrossRef]

E. N. Sokolov, Ch. A. Izmailov, “The conceptual reflex arc: a model of neural processing as developed for colour vision,” in Modern Issues in Perception, H.-G. Geissler, ed. (VEB Deutscher Verlag der Wissenschaft, 1983), pp. 192–216.
[CrossRef]

E. N. Sokolov, Ch. A. Izmailov, B. Schönebeck, “Vergleichende Experimente zur mehrdimensionalen Skalierung subjektiver Farbunterscheide und ihrer internen sphärischen Repräsentation,” Z. Psychol. 190, 275–293 (1982).

Stabell, B.

Stabell, U.

Swartley, R.

V. C. Smith, J. Pokorny, R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115–131 (1973).
[CrossRef] [PubMed]

Takahashi, S.

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color processes,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

Thomson, L. C.

L. C. Thomson, P. W. Trezona, “The variations of hue discrimination with change of luminance level,” J. Physiol. (London) 114, 98–106 (1951).

Trezona, P. W.

L. C. Thomson, P. W. Trezona, “The variations of hue discrimination with change of luminance level,” J. Physiol. (London) 114, 98–106 (1951).

Valberg, A.

A. Valberg, “Unique hues: an old problem for a new generation,” Vision Res. 41, 1645–1657 (2001).
[CrossRef] [PubMed]

A. Valberg, B. Lange-Malecki, T. Seim, “Colour changes as a function of luminance,” Perception 20, 655–668 (1991).
[CrossRef]

A. Valberg, T. Seim, “On physiological basis of higher colour metrics,” in From Pigments to Perception, A. Valberg and B. Lee, eds. (Plenum, 1991), pp. 425–436.
[CrossRef]

Vayner, A.

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

Volbrecht, V. J.

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “A new look at the Bezold–Brücke hue shift in the peripheral retina,” Vision Res. 44, 1891–1906 (2004).
[CrossRef]

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “Differences in peripheral hue perception as revealed by the Bezold–Brücke hue shift,” Invest. Ophthalmol. Visual Sci. 41, S806 (2000).

von Bezold, W.

W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, (1873);W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, 221–247 (1873).
[CrossRef]

Walraven, J.

J. Walraven, J. Werner, “The invariance of unique white: A possible implication for normalizing the cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef]

Walraven, P. L.

Wascher, T. C.

Webster, M. A.

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in Anthropology of Color: Interdisciplinary Multilevel Modeling, R. E. MacLaury, G. V. Paramei, and D. Dedrick, eds. (to be published).

Werner, J.

J. Walraven, J. Werner, “The invariance of unique white: A possible implication for normalizing the cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef]

Wilson, J. A.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

Wooten, B. R.

K. Knoblauch, B. R. Wooten, “Intensity invariance of the achromatic point in sex-linked dichromacy,” Doc. Ophthalmol. Proc. Ser. 33, 287–294 (1982).

Acta Chromatica (1)

L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/75).

Am. J. Psychol. (4)

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

D. M. Purdy, “The Bezold–Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313–315 (1937).
[CrossRef]

V. C. Smith, J. Pokorny, R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115–131 (1973).
[CrossRef] [PubMed]

S. M. Luria, “Color name as a function of stimulus intensity and duration,” Am. J. Psychol. 80, 14–27 (1967).
[CrossRef] [PubMed]

Ann. Phys. Chem. (1)

W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, (1873);W. von Bezold, “Über das Gesetz der Farbmischung und die physiologischen Grundfarben,” Ann. Phys. Chem. 150, 71–93, 221–247 (1873).
[CrossRef]

Annu. Rev. Psychol. (1)

I. Abramov, J. Gordon, “Color appearance: On seeing red–or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

Br. J. Psychol. (1)

D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282–313 (1931).

Color Res. Appl. (3)

R. W. G. Hunt, “Hue shifts in unrelated and related colours,” Color Res. Appl. 14, 235–239 (1989).
[CrossRef]

R. G. Kuehni, “Variability in unique hue selection: A surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

J. Gordon, I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988).
[CrossRef]

Curr. Anthropol. (1)

R. E. MacLaury, “From brightness to hue: An explanatory model of color-category evolution,” Curr. Anthropol. 33, 137–186 with Discussion (1992).
[CrossRef]

Doc. Ophthalmol. Proc. Ser. (1)

K. Knoblauch, B. R. Wooten, “Intensity invariance of the achromatic point in sex-linked dichromacy,” Doc. Ophthalmol. Proc. Ser. 33, 287–294 (1982).

Invest. Ophthalmol. Visual Sci. (2)

I. Abramov, J. Gordon, V. Akilov, M. Babiy, G. Bakis, S. Ilyusha, K. Khamermesh, A. Vayner, “Color appearance: singing the Russian blues,” Invest. Ophthalmol. Visual Sci. 38, S899 (1997).

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “Differences in peripheral hue perception as revealed by the Bezold–Brücke hue shift,” Invest. Ophthalmol. Visual Sci. 41, S806 (2000).

J. Opt. Soc. Am. (7)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (1)

L. C. Thomson, P. W. Trezona, “The variations of hue discrimination with change of luminance level,” J. Physiol. (London) 114, 98–106 (1951).

Percept. Psychophys. (1)

R. T. Kintz, J. A. Parker, R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[CrossRef]

Perception (1)

A. Valberg, B. Lange-Malecki, T. Seim, “Colour changes as a function of luminance,” Perception 20, 655–668 (1991).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

Psychol. Sci. (2)

G. V. Paramei, “Color space of normally sighted and color-deficient observers reconstructed from color naming,” Psychol. Sci. 7, 311–317 (1996).
[CrossRef]

Ch. A. Izmailov, E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249–259 (1991).
[CrossRef]

Psychometrika (1)

J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 28, 1–27 (1964).
[CrossRef]

Science (1)

R. M. Boynton, W. Schafer, M. E. Neun, “Hue-wavelength relation measured by color-naming for three retinal locations,” Science 146, 83–86 (1964).
[CrossRef]

Sens Processes (1)

D. Jameson, L. M. Hurvich, “Dichromatic color language: “Reds” and “Greens” don’t look alike but their colors do,” Sens Processes 2, 146–155 (1978).
[PubMed]

Vision Res. (16)

A. Valberg, “Unique hues: an old problem for a new generation,” Vision Res. 41, 1645–1657 (2001).
[CrossRef] [PubMed]

A. L. Nagy, “Short-flash Bezold–Brücke hue shifts,” Vision Res. 20, 361–368 (1980).
[CrossRef]

J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–352 (1975).
[CrossRef] [PubMed]

R. W. Pridmore, “Bezold–Brücke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colours,” Vision Res. 39, 3873–3891 (1999).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity: II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

S. L. Buck, R. Knight, J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000).
[CrossRef] [PubMed]

R. W. Massof, J. E. Bailey, “Achromatic points in protanopes and deuteranopes,” Vision Res. 16, 53–57 (1976).
[CrossRef] [PubMed]

K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237–246 (1991).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

J. Walraven, J. Werner, “The invariance of unique white: A possible implication for normalizing the cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef]

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color processes,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

M. J. McMahon, D. I. A. MacLeod, “Dichromatic color vision at very high light levels: Red/Green discrimination using the blue-sensitive mechanisms,” Vision Res. 38, 973–983 (1998).
[CrossRef] [PubMed]

G. V. Paramei, D. L. Bimler, C. R. Cavonius, “Effects of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

S. M. Imhoff, V. J. Volbrecht, J. L. Nerger, “A new look at the Bezold–Brücke hue shift in the peripheral retina,” Vision Res. 44, 1891–1906 (2004).
[CrossRef]

Visual Neurosci. (1)

D. Bimler, G. V. Paramei, “Luminance-dependent hue shift in protanopes,” Visual Neurosci. 21, 403–407 (2004).
[CrossRef]

Other (8)

K. A. Jameson, “Why GRUE? An interpoint-distance model analysis of color categories,” Cross.-Cult. Res. 39 (2005; in press).

M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in Anthropology of Color: Interdisciplinary Multilevel Modeling, R. E. MacLaury, G. V. Paramei, and D. Dedrick, eds. (to be published).

E. N. Sokolov, Ch. A. Izmailov, B. Schönebeck, “Vergleichende Experimente zur mehrdimensionalen Skalierung subjektiver Farbunterscheide und ihrer internen sphärischen Repräsentation,” Z. Psychol. 190, 275–293 (1982).

E. N. Sokolov, Ch. A. Izmailov, “The conceptual reflex arc: a model of neural processing as developed for colour vision,” in Modern Issues in Perception, H.-G. Geissler, ed. (VEB Deutscher Verlag der Wissenschaft, 1983), pp. 192–216.
[CrossRef]

G. V. Paramei, D. Bimler, “Vector coding underlying individual transformations of a color space,” in Vision: The Approach of Biophysics and Neurosciences (Series of Biophysics and Biocybernetics, Vol. 11), C. Musio, ed. (World Scientific, 2001), pp. 429–436.
[CrossRef]

A. Valberg, T. Seim, “On physiological basis of higher colour metrics,” in From Pigments to Perception, A. Valberg and B. Lee, eds. (Plenum, 1991), pp. 425–436.
[CrossRef]

M. E. Brücke, “Über einige Empfindungen im Gebiet der Sehnerven,” Sitz. Ber. d. K. K. Akad. d. Wissensch. Math. Nat. Wiss. Classe 77, 39–71 (1878).

R. N. Shepard, J. D. Carroll, “Parametric representation of nonlinear data structures,” in Multivariate Analysis, P. R. Krishnaiah, ed. (Academic, 1966), pp. 561–592.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Color-naming responses (vertical axis) for normal trichromats at each luminance level as a function of wavelength (horizontal axis). (a) Blue, (b) green, (c) yellow, (d) red, (e) white. Curves are paired, VZ above GP, with vertical offset for clarity. Key to luminance levels: open triangles on light solid curve, 0.76 Td ; open squares on dashed–double-dotted curve, 7.6 Td ; open circles on dashed–dotted curve, 38 Td ; filled triangles on dotted curve, 76 Td ; filled squares on dashed curve, 380 Td ; filled circles on heavy solid curve, 760 Td .

Fig. 2
Fig. 2

Hue function H for normal trichromats plotted against wavelength for six luminance levels, spaced vertically for clarity. Dashed lines link each stimulus at 760 Td (top line) to wavelengths at lower luminance that would produce the same H.

Fig. 3
Fig. 3

Bezold–Brücke hue shift in normal trichromats. Horizontal axis, λ. Vertical axis, Δ λ , the change in wavelength required to compensate for a difference in luminance between stimuli at 760 Td and at lower luminance values, i.e., to produce the same H (and color-name combination). Key to lower luminance levels: light solid curve, 380 Td ; long-dashed curve, 76 Td ; short-dashed curve, 38 Td ; dotted curve, 7.6 Td ; heavy solid curve, 0.76 Td .

Fig. 4
Fig. 4

Color space for normal trichromats, plotted in spherical coordinates. Horizontal axis, hue angle Θ; vertical axis, achromatic angle Ψ (desaturation). Hue angles where stimuli are “unique hues” °b, °g, °y, °r in the raw data are marked as vertical lines. Six unlabeled points near Ψ = 90 ° (i.e., at the positive extreme of D 3 ) represent the W stimuli. (a) Same-luminance stimuli linked in order of wavelength. (b) Same-wavelength stimuli linked in order of increasing luminance, from 0.76 Td (open circles) to 760 Td (filled circles). (These data were previously shown in Ref. [36], Fig. 1.)

Fig. 5
Fig. 5

Color-naming responses (vertical axis) for protanopes AA (left) and DA (right) at each luminance level as a function of wavelength (horizontal axis). (a) Blue, (b) green, (c) yellow, (d) red, (e) white. Line styles indicate luminance levels as in Fig. 1. Curves are paired (right eye above left eye), with vertical offset for clarity. Fig. 5 continues on next page.

Fig. 6
Fig. 6

Color spaces for protanopes, plotted in spherical coordinates. Horizontal axis, hue/saturation angle Θ; Vertical axis, luminance angle Ψ. (a) Subject AA, same-luminance stimuli linked in order of wavelength. (b) Subject AA, same-wavelength stimuli linked in order of increasing luminance from 0.76 Td (open circles) to 760 Td (filled circles). (c) Subject DA, same-luminance stimuli linked in order of wavelength. (d) Subject DA, same-wavelength stimuli linked in order of increasing luminance from 0.76 Td (open circles) to 760 Td (filled circles). Fig. 6 continues on next page.

Fig. 7
Fig. 7

Θ as a function of wavelength for six luminance levels (spaced vertically for clarity), for protanopes (a) AA and (b) DA. Dashed lines link each stimulus at 760 Td (top line) to wavelengths at lower luminance that would produce the same Θ.

Fig. 8
Fig. 8

An analog of the Bezold–Brücke hue shift for protanopes (a) AA and (b) DA, comparing 760 Td stimuli against lower luminance values. Axes and key to lower luminance levels as in Fig. 3 (with different scale on the vertical axis).

Metrics