Abstract

The number and nature of the mechanisms for the detection of colored stimuli are still unclear. We use the paradigm of classification images to investigate the detection of a signal of homogeneous color added to a noisy texture. Both signal and noise colors were chosen from the isoluminant plane of the Derrington–Krauskopf–Lennie (DKL) color space. The signal consisted of a square of homogeneous color that was chosen from either cardinal or noncardinal directions of the DKL color space. The noisy texture consisted of small squares of varying colors that were chosen randomly across the isoluminant plane. Classification images reveal that (1) the cardinal axes play no specific role; (2) the widths of the tuning curves vary between 30 and 90deg, consistent with the variation of tuning widths of neurons at early cortical stages; and (3) detection is not based on the whole region covered by the signal but is influenced mostly by a small spot around the fixation point.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
    [Crossref] [PubMed]
  2. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
    [Crossref] [PubMed]
  3. J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [Crossref] [PubMed]
  4. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  5. B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
    [Crossref] [PubMed]
  6. K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
    [Crossref] [PubMed]
  7. T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
    [Crossref] [PubMed]
  8. M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
    [Crossref]
  9. R. T. Eskew, J. R. Newton, F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vision Res. 41, 893–909 (2001).
    [Crossref] [PubMed]
  10. F. Giulianini, R. T. Eskew, “Chromatic masking in the (ΔL∕L,ΔM∕M) plane of cone-contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
    [Crossref]
  11. R. Bouet, K. Knoblauch, “Perceptual classification of chromatic modulation,” Visual Neurosci. 21, 283–289 (2004).
    [Crossref]
  12. K. S. Cardinal, D. C. Kiper, “The detection of colored glass patterns,” J. Math. Imaging Vision 3, 199–208 (2003).
  13. M. D’Zmura, K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
    [Crossref]
  14. T. Hansen, K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” submitted to J. Vision.
  15. A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
    [Crossref] [PubMed]
  16. K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
    [Crossref] [PubMed]
  17. N. Goda, M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vision Res. 41, 2475–2485 (2001).
    [Crossref] [PubMed]
  18. B. L. Beard, A. J. Ahumada, “Technique to extract relevant image features for visual tasks,” in Proc. SPIE 3299, 79–85 (1998).
    [Crossref]
  19. A. J. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Prog. Aerosp. Sci. 26, 18 (1996).
  20. B. L. Beard, A. J. Ahumada, “Relevant image features for Vernier acuity,” Prog. Aerosp. Sci. 26, 38 (1997).
  21. J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
    [Crossref] [PubMed]
  22. P. Neri, D. J. Heeger, “Spatiotemporal mechanisms for detecting and identifying image features in human vision,” Nat. Rev. Neurosci. 5, 812–816 (2002).
  23. D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the Twelfth Session of the CIE, Stockholm (Bureau Central de la CIE, 1951), p. 11.
  24. G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  25. H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
    [Crossref]
  26. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  27. D. I. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [Crossref] [PubMed]
  28. D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. Kaiser and R. M. Boynton, eds. (Optical Society of America, 1996), pp. 563–579.
  29. D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
    [Crossref]
  30. D. J. McKeefry, P. V. McGraw, C. Vakrou, D. Whitaker, “Chromatic adaptation, perceived location, and color tuning properties,” Visual Neurosci. 21, 275–282 (2004).
    [Crossref]

2004 (2)

R. Bouet, K. Knoblauch, “Perceptual classification of chromatic modulation,” Visual Neurosci. 21, 283–289 (2004).
[Crossref]

D. J. McKeefry, P. V. McGraw, C. Vakrou, D. Whitaker, “Chromatic adaptation, perceived location, and color tuning properties,” Visual Neurosci. 21, 275–282 (2004).
[Crossref]

2003 (3)

K. S. Cardinal, D. C. Kiper, “The detection of colored glass patterns,” J. Math. Imaging Vision 3, 199–208 (2003).

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[Crossref] [PubMed]

T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[Crossref] [PubMed]

2002 (1)

P. Neri, D. J. Heeger, “Spatiotemporal mechanisms for detecting and identifying image features in human vision,” Nat. Rev. Neurosci. 5, 812–816 (2002).

2001 (2)

R. T. Eskew, J. R. Newton, F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vision Res. 41, 893–909 (2001).
[Crossref] [PubMed]

N. Goda, M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vision Res. 41, 2475–2485 (2001).
[Crossref] [PubMed]

2000 (1)

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[Crossref] [PubMed]

1998 (3)

B. L. Beard, A. J. Ahumada, “Technique to extract relevant image features for visual tasks,” in Proc. SPIE 3299, 79–85 (1998).
[Crossref]

M. D’Zmura, K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[Crossref]

F. Giulianini, R. T. Eskew, “Chromatic masking in the (ΔL∕L,ΔM∕M) plane of cone-contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[Crossref]

1997 (4)

M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[Crossref]

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[Crossref] [PubMed]

B. L. Beard, A. J. Ahumada, “Relevant image features for Vernier acuity,” Prog. Aerosp. Sci. 26, 38 (1997).

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[Crossref]

1996 (2)

B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
[Crossref] [PubMed]

A. J. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Prog. Aerosp. Sci. 26, 18 (1996).

1992 (2)

K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[Crossref] [PubMed]

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[Crossref]

1984 (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

1983 (1)

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

1979 (1)

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

1964 (1)

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[Crossref] [PubMed]

1957 (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[Crossref] [PubMed]

Ahumada, A. J.

B. L. Beard, A. J. Ahumada, “Technique to extract relevant image features for visual tasks,” in Proc. SPIE 3299, 79–85 (1998).
[Crossref]

B. L. Beard, A. J. Ahumada, “Relevant image features for Vernier acuity,” Prog. Aerosp. Sci. 26, 38 (1997).

A. J. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Prog. Aerosp. Sci. 26, 18 (1996).

Albright, T. D.

T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[Crossref] [PubMed]

Beard, B. L.

B. L. Beard, A. J. Ahumada, “Technique to extract relevant image features for visual tasks,” in Proc. SPIE 3299, 79–85 (1998).
[Crossref]

B. L. Beard, A. J. Ahumada, “Relevant image features for Vernier acuity,” Prog. Aerosp. Sci. 26, 38 (1997).

Bennett, P. J.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[Crossref] [PubMed]

Bouet, R.

R. Bouet, K. Knoblauch, “Perceptual classification of chromatic modulation,” Visual Neurosci. 21, 283–289 (2004).
[Crossref]

Boynton, R. M.

D. I. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[Crossref] [PubMed]

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[Crossref] [PubMed]

Brainard, D. H.

D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. Kaiser and R. M. Boynton, eds. (Optical Society of America, 1996), pp. 563–579.

Cardinal, K. S.

K. S. Cardinal, D. C. Kiper, “The detection of colored glass patterns,” J. Math. Imaging Vision 3, 199–208 (2003).

D’Zmura, M.

M. D’Zmura, K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[Crossref]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Eskew, R. T.

R. T. Eskew, J. R. Newton, F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vision Res. 41, 893–909 (2001).
[Crossref] [PubMed]

F. Giulianini, R. T. Eskew, “Chromatic masking in the (ΔL∕L,ΔM∕M) plane of cone-contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[Crossref]

Fenstemaker, S. B.

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[Crossref]

Fujii, M.

N. Goda, M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vision Res. 41, 2475–2485 (2001).
[Crossref] [PubMed]

Gegenfurtner, K. R.

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[Crossref] [PubMed]

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[Crossref]

K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[Crossref] [PubMed]

T. Hansen, K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” submitted to J. Vision.

Giulianini, F.

R. T. Eskew, J. R. Newton, F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vision Res. 41, 893–909 (2001).
[Crossref] [PubMed]

F. Giulianini, R. T. Eskew, “Chromatic masking in the (ΔL∕L,ΔM∕M) plane of cone-contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[Crossref]

Goda, N.

N. Goda, M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vision Res. 41, 2475–2485 (2001).
[Crossref] [PubMed]

Gold, J. M.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[Crossref] [PubMed]

Hansen, T.

T. Hansen, K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” submitted to J. Vision.

Heeger, D. J.

P. Neri, D. J. Heeger, “Spatiotemporal mechanisms for detecting and identifying image features in human vision,” Nat. Rev. Neurosci. 5, 812–816 (2002).

Hurvich, L. M.

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[Crossref] [PubMed]

Ikeda, M.

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[Crossref] [PubMed]

Irtel, H.

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[Crossref]

Jameson, D.

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[Crossref] [PubMed]

Judd, D. B.

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the Twelfth Session of the CIE, Stockholm (Bureau Central de la CIE, 1951), p. 11.

Kiper, D. C.

K. S. Cardinal, D. C. Kiper, “The detection of colored glass patterns,” J. Math. Imaging Vision 3, 199–208 (2003).

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[Crossref]

K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[Crossref] [PubMed]

Knoblauch, K.

R. Bouet, K. Knoblauch, “Perceptual classification of chromatic modulation,” Visual Neurosci. 21, 283–289 (2004).
[Crossref]

M. D’Zmura, K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[Crossref]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Lee, B. B.

B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
[Crossref] [PubMed]

Lennie, P.

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[Crossref] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Li, A.

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[Crossref] [PubMed]

MacLeod, D. I.

McGraw, P. V.

D. J. McKeefry, P. V. McGraw, C. Vakrou, D. Whitaker, “Chromatic adaptation, perceived location, and color tuning properties,” Visual Neurosci. 21, 275–282 (2004).
[Crossref]

McKeefry, D. J.

D. J. McKeefry, P. V. McGraw, C. Vakrou, D. Whitaker, “Chromatic adaptation, perceived location, and color tuning properties,” Visual Neurosci. 21, 275–282 (2004).
[Crossref]

Mullen, K. T.

Murray, R. F.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[Crossref] [PubMed]

Neri, P.

P. Neri, D. J. Heeger, “Spatiotemporal mechanisms for detecting and identifying image features in human vision,” Nat. Rev. Neurosci. 5, 812–816 (2002).

Newton, J. R.

R. T. Eskew, J. R. Newton, F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vision Res. 41, 893–909 (2001).
[Crossref] [PubMed]

Pokorny, J.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Pugh, E. N.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

Sankeralli, M. J.

Sejnowski, T. J.

T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[Crossref] [PubMed]

Sekuler, A. B.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[Crossref] [PubMed]

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Stiles, W. S.

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[Crossref] [PubMed]

G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Thornton, J. E.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

Vakrou, C.

D. J. McKeefry, P. V. McGraw, C. Vakrou, D. Whitaker, “Chromatic adaptation, perceived location, and color tuning properties,” Visual Neurosci. 21, 275–282 (2004).
[Crossref]

Wachtler, T.

T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[Crossref] [PubMed]

Whitaker, D.

D. J. McKeefry, P. V. McGraw, C. Vakrou, D. Whitaker, “Chromatic adaptation, perceived location, and color tuning properties,” Visual Neurosci. 21, 275–282 (2004).
[Crossref]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Behav. Res. Methods Instrum. Comput. (1)

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[Crossref]

Curr. Biol. (1)

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[Crossref] [PubMed]

J. Math. Imaging Vision (1)

K. S. Cardinal, D. C. Kiper, “The detection of colored glass patterns,” J. Math. Imaging Vision 3, 199–208 (2003).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Nat. Rev. Neurosci. (2)

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[Crossref] [PubMed]

P. Neri, D. J. Heeger, “Spatiotemporal mechanisms for detecting and identifying image features in human vision,” Nat. Rev. Neurosci. 5, 812–816 (2002).

Neuron (1)

T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[Crossref] [PubMed]

Proc. SPIE (1)

B. L. Beard, A. J. Ahumada, “Technique to extract relevant image features for visual tasks,” in Proc. SPIE 3299, 79–85 (1998).
[Crossref]

Prog. Aerosp. Sci. (2)

A. J. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Prog. Aerosp. Sci. 26, 18 (1996).

B. L. Beard, A. J. Ahumada, “Relevant image features for Vernier acuity,” Prog. Aerosp. Sci. 26, 38 (1997).

Psychol. Rev. (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[Crossref] [PubMed]

Science (1)

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

Vision Res. (8)

B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
[Crossref] [PubMed]

R. T. Eskew, J. R. Newton, F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vision Res. 41, 893–909 (2001).
[Crossref] [PubMed]

F. Giulianini, R. T. Eskew, “Chromatic masking in the (ΔL∕L,ΔM∕M) plane of cone-contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[Crossref]

M. D’Zmura, K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[Crossref]

N. Goda, M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vision Res. 41, 2475–2485 (2001).
[Crossref] [PubMed]

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[Crossref] [PubMed]

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Visual Neurosci. (3)

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[Crossref]

D. J. McKeefry, P. V. McGraw, C. Vakrou, D. Whitaker, “Chromatic adaptation, perceived location, and color tuning properties,” Visual Neurosci. 21, 275–282 (2004).
[Crossref]

R. Bouet, K. Knoblauch, “Perceptual classification of chromatic modulation,” Visual Neurosci. 21, 283–289 (2004).
[Crossref]

Other (4)

T. Hansen, K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” submitted to J. Vision.

D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. Kaiser and R. M. Boynton, eds. (Optical Society of America, 1996), pp. 563–579.

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the Twelfth Session of the CIE, Stockholm (Bureau Central de la CIE, 1951), p. 11.

G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Left: DKL space with the isoluminant plane (filled area). The isoluminant plane is spanned by the L M and S ( L + M ) axes that together with the achromatic L + M axis define the cardinal axes of the DKL color space. Right: Display of the isoluminant plane. The chromaticities of the stimuli used in the present experiment are confined to the isoluminant plane.

Fig. 2
Fig. 2

Classification images for observer CA (top panel) and classification images averaged across all four observers (bottom panel). The images are scaled up to maximum chromatic contrast. The central square in each image outlines the extent of the signal patch. For each panel, the upper row shows the classification images along the cardinal directions, the bottom row shows classification images along intermediate, noncardinal directions.

Fig. 3
Fig. 3

(Color online) Color histograms for observer CA. The abscissa denotes relative chromatic direction, and the ordinate denotes the relative contribution of each chromatic direction in the classification histogram in the range [ 0.15 , 0.3 ] . The horizontal line marks zero, corresponding to no influence of the color on the detection results. The color histograms for the background (solid black curve) show almost no color-specific modulation, whereas the color histograms for the signal region (filled area) have a strong modulation depending on the signal color; the vertical line at 0 deg marks the maximum of the color histogram. The off-center vertical line marks the relative position of the signal color. Gaussian fits to the data are shown with a dashed curve together with the corresponding HWHH values.

Fig. 4
Fig. 4

(Color online) Color histograms averaged across all four observers.

Fig. 5
Fig. 5

Distribution of tuning curve widths (HWHH). The dashed lines denotes the tuning width of 60 deg , corresponding to a linear transformation of cone input. Left, data for all four subjects; middle, data from macaque V1.[7] Right, data from macaque V2.[29]

Fig. 6
Fig. 6

(Color online) Polar plots of the color histograms for four observers. Tuning curves are shown for signal color at the cardinal directions (solid curves) and along intermediate directions (dashed curves).

Fig. 7
Fig. 7

Deviation of the peak of the detected color from the signal color for four subjects. Left, absolute differences; right, relative differences.

Fig. 8
Fig. 8

(Color online) Deviation of the peak of the detected color from the signal color: correlation between blocks of trials. For a perfect agreement between responses in the blocks of 1000 trials, all data points would fall on the main diagonal (dashed lines). Solid squares denote deviations for the cardinal directions, open squares for intermediate directions. The dotted rectangle marks a deviation of ± 45 deg . Except for the purplish color at 270 deg for subjects CA, MD, and TH and the cyan color at 225 deg for subject TH, all colors lie almost perfectly on the main diagonal, showing a high degree of correlation between the deviation in the two blocks.

Fig. 9
Fig. 9

(Color online) Color histograms for intermediate directions in the third quadrant (top row, observer CA, bottom row, observer MD). The bluish colors can be detected with high accuracy as revealed by the small offset between the maximum in the color histogram (vertical line at 0 deg) and the signal color (off-center vertical line).

Tables (1)

Tables Icon

Table 1 Peaks of the Color Histograms and ± HWHH for the Four Observers

Metrics