Abstract

In the middle of the last century, R. L. De Valois designed and built a unique and effective amplifier based on the newly developed field-effect transistor (FET). This amplifier has many beneficial qualities for amplifying the signals of neurons with minimal disturbance. We have used this amplifier successfully for more than three decades. We describe the circuitry of the De Valois amplifier and provide performance specifications. The FET amplifier is one of De Valois’s contributions to visual neurophysiology; we share the design in his honor, with the hope that it might prove useful to others.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. De Valois, C. J. Smith, S. T. Kitai, A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958).
    [Crossref] [PubMed]
  2. H. B. Barlow, “Summation and inhibition in the frog’s retina,” J. Physiol. (London) 119, 69–88 (1953).
  3. S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
    [PubMed]
  4. D. H. Hubel, T. N. Wiesel, “Receptive fields, bin- ocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  5. D. G. Albrecht, “Analysis of visual form: an electrophysiological investigation of visual information processing,” Ph.D. dissertation, (University of California, Berkeley, 1978).
  6. R. A. Frazor, D. G. Albrecht, W. S. Geisler, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function,” J. Neurophysiol. 91, 2607–2627 (2004).
    [Crossref] [PubMed]
  7. W. Schockley, “A uni-polar field-effect transistor,” Proc. IRE 40, 1365–1376 (1952).
    [Crossref]
  8. D. M. Snodderly, “Extracellular single unit recording,” in Bioelectric Recording Techniques, Part A: Cellular Processes and Brain Potentials, R. F. Thompson and M. M. Patterson, eds. (Academic, 1973), pp. 139–141.

2004 (1)

R. A. Frazor, D. G. Albrecht, W. S. Geisler, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function,” J. Neurophysiol. 91, 2607–2627 (2004).
[Crossref] [PubMed]

1962 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields, bin- ocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

1958 (1)

R. L. De Valois, C. J. Smith, S. T. Kitai, A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958).
[Crossref] [PubMed]

1953 (2)

H. B. Barlow, “Summation and inhibition in the frog’s retina,” J. Physiol. (London) 119, 69–88 (1953).

S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
[PubMed]

1952 (1)

W. Schockley, “A uni-polar field-effect transistor,” Proc. IRE 40, 1365–1376 (1952).
[Crossref]

Albrecht, D. G.

R. A. Frazor, D. G. Albrecht, W. S. Geisler, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function,” J. Neurophysiol. 91, 2607–2627 (2004).
[Crossref] [PubMed]

D. G. Albrecht, “Analysis of visual form: an electrophysiological investigation of visual information processing,” Ph.D. dissertation, (University of California, Berkeley, 1978).

Barlow, H. B.

H. B. Barlow, “Summation and inhibition in the frog’s retina,” J. Physiol. (London) 119, 69–88 (1953).

Crane, A. M.

R. A. Frazor, D. G. Albrecht, W. S. Geisler, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function,” J. Neurophysiol. 91, 2607–2627 (2004).
[Crossref] [PubMed]

De Valois, R. L.

R. L. De Valois, C. J. Smith, S. T. Kitai, A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958).
[Crossref] [PubMed]

Frazor, R. A.

R. A. Frazor, D. G. Albrecht, W. S. Geisler, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function,” J. Neurophysiol. 91, 2607–2627 (2004).
[Crossref] [PubMed]

Geisler, W. S.

R. A. Frazor, D. G. Albrecht, W. S. Geisler, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function,” J. Neurophysiol. 91, 2607–2627 (2004).
[Crossref] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields, bin- ocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Karoly, A. J.

R. L. De Valois, C. J. Smith, S. T. Kitai, A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958).
[Crossref] [PubMed]

Kitai, S. T.

R. L. De Valois, C. J. Smith, S. T. Kitai, A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958).
[Crossref] [PubMed]

Kuffler, S. W.

S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
[PubMed]

Schockley, W.

W. Schockley, “A uni-polar field-effect transistor,” Proc. IRE 40, 1365–1376 (1952).
[Crossref]

Smith, C. J.

R. L. De Valois, C. J. Smith, S. T. Kitai, A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958).
[Crossref] [PubMed]

Snodderly, D. M.

D. M. Snodderly, “Extracellular single unit recording,” in Bioelectric Recording Techniques, Part A: Cellular Processes and Brain Potentials, R. F. Thompson and M. M. Patterson, eds. (Academic, 1973), pp. 139–141.

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields, bin- ocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

J. Neurophysiol. (2)

S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
[PubMed]

R. A. Frazor, D. G. Albrecht, W. S. Geisler, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function,” J. Neurophysiol. 91, 2607–2627 (2004).
[Crossref] [PubMed]

J. Physiol. (London) (2)

D. H. Hubel, T. N. Wiesel, “Receptive fields, bin- ocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

H. B. Barlow, “Summation and inhibition in the frog’s retina,” J. Physiol. (London) 119, 69–88 (1953).

Proc. IRE (1)

W. Schockley, “A uni-polar field-effect transistor,” Proc. IRE 40, 1365–1376 (1952).
[Crossref]

Science (1)

R. L. De Valois, C. J. Smith, S. T. Kitai, A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958).
[Crossref] [PubMed]

Other (2)

D. G. Albrecht, “Analysis of visual form: an electrophysiological investigation of visual information processing,” Ph.D. dissertation, (University of California, Berkeley, 1978).

D. M. Snodderly, “Extracellular single unit recording,” in Bioelectric Recording Techniques, Part A: Cellular Processes and Brain Potentials, R. F. Thompson and M. M. Patterson, eds. (Academic, 1973), pp. 139–141.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Circuit diagram of the original FET amplifier designed and constructed by R. L. De Valois. Table 1 provides a detailed description for each of the components identified with symbols.

Fig. 2
Fig. 2

Circuit diagram of a newer design of the original FET amplifier that utilizes an integrated circuit for the high-gain amplification stage. Table 1 provides a detailed description for each of the components identified with symbols.

Fig. 3
Fig. 3

Measured gain (left vertical axis) and attenuation (right vertical axis) for the original FET amplifier (lower curve) and the newer design of the FET amplifier (upper curve) as a function of frequency.

Tables (1)

Tables Icon

Table 1 Component List for De Valois Preamplifiers

Metrics