Abstract

We present our investigation of the torque exerted on dielectric elliptical cylinders by highly focused laser beams. The calculations are performed with rigorous diffraction theory, and the size-dependent torque is analyzed as a function of the axis ratio. It is found that highly elongated particles will experience a reversal of the torque for a radius that is approximately one third of the wavelength. This effect is attributed to interference effects inside the structure due to multiple reflections of the incoming wave. The evolution from a perfectly sinusoidal angular dependence of the torque to a more complicated pattern for increasing particle size is presented in detail.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
    [CrossRef]
  4. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
    [CrossRef] [PubMed]
  5. R. C. Gauthier, A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-cubic glass structure,” Appl. Opt. 39, 3060–3070 (2000).
    [CrossRef]
  6. Y. Harada, T. Asakura, “Radiation forces on a dielectric particle in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [CrossRef]
  7. S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser trapped particle,” Jpn. J. Appl. Phys., Part 1 33, L1725–L1727 (1994).
    [CrossRef]
  8. A. Rohrbach, E. L. Florin, E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. F. Kaschke, eds., Proc. SPIE4431, 75–86 (2001).
    [CrossRef]
  9. P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984).
    [CrossRef]
  10. A. T. O’Neil, M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum with an optical spanner,” Opt. Commun. 185, 139–143 (2000).
    [CrossRef]
  11. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
  12. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
    [CrossRef]
  13. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
    [CrossRef]
  14. P. Galadja, P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003), http://www.opticsexpress.org .
    [CrossRef]
  15. P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
    [CrossRef]
  16. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
    [CrossRef]
  17. T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
    [CrossRef]
  18. H. Polaert, G. Gréhan, G. Gousbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
    [CrossRef]
  19. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
    [CrossRef]
  20. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
    [CrossRef]
  21. C. Hafner, Post-Modern Electromagnetics (Wiley, New York, 1999).
  22. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  23. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).
  24. X. Wang, X.-B. Wang, P. R. C. Cascoyne, “General expressions for dielectrophoretic force and electrostational torque derived using the Maxwell stress tensor,” J. Opt. Commun. 39, 277–295 (1997).
  25. M. Lester, M. Nieto-Vesperinas, “Optical forces on microparticles in an evanescent laser field,” Opt. Lett. 24, 936–938 (1999).
    [CrossRef]
  26. C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6, 921–931 (2004).
    [CrossRef]
  27. K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]

2004 (1)

C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6, 921–931 (2004).
[CrossRef]

2003 (5)

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
[CrossRef]

P. Galadja, P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003), http://www.opticsexpress.org .
[CrossRef]

2001 (4)

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

2000 (2)

A. T. O’Neil, M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum with an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

R. C. Gauthier, A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-cubic glass structure,” Appl. Opt. 39, 3060–3070 (2000).
[CrossRef]

1999 (1)

1998 (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).

H. Polaert, G. Gréhan, G. Gousbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

1997 (3)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

X. Wang, X.-B. Wang, P. R. C. Cascoyne, “General expressions for dielectrophoretic force and electrostational torque derived using the Maxwell stress tensor,” J. Opt. Commun. 39, 277–295 (1997).

1996 (1)

Y. Harada, T. Asakura, “Radiation forces on a dielectric particle in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

1994 (1)

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser trapped particle,” Jpn. J. Appl. Phys., Part 1 33, L1725–L1727 (1994).
[CrossRef]

1989 (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

1984 (1)

P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984).
[CrossRef]

1971 (1)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

Asakura, T.

Y. Harada, T. Asakura, “Radiation forces on a dielectric particle in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

Bayoudh, S.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[CrossRef]

Bergman, D. J.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

Cascoyne, P. R. C.

X. Wang, X.-B. Wang, P. R. C. Cascoyne, “General expressions for dielectrophoretic force and electrostational torque derived using the Maxwell stress tensor,” J. Opt. Commun. 39, 277–295 (1997).

Crichton, J. H.

P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Florin, E. L.

A. Rohrbach, E. L. Florin, E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. F. Kaschke, eds., Proc. SPIE4431, 75–86 (2001).
[CrossRef]

Frangioudakis, A.

Friese, M. E. J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).

Galadja, P.

Galajda, P.

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[CrossRef]

Gauthier, R. C.

Gold, J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Gousbet, G.

H. Polaert, G. Gréhan, G. Gousbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

Gréhan, G.

H. Polaert, G. Gréhan, G. Gousbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
[CrossRef]

Hafner, C.

C. Hafner, Post-Modern Electromagnetics (Wiley, New York, 1999).

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).

Hagberg, P.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Hanstorp, D.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Harada, Y.

Y. Harada, T. Asakura, “Radiation forces on a dielectric particle in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[CrossRef]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).

Herzig, H. P.

C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6, 921–931 (2004).
[CrossRef]

Inouye, Y.

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser trapped particle,” Jpn. J. Appl. Phys., Part 1 33, L1725–L1727 (1994).
[CrossRef]

Kawata, S.

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser trapped particle,” Jpn. J. Appl. Phys., Part 1 33, L1725–L1727 (1994).
[CrossRef]

Lester, M.

Li, K.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Marston, P. L.

P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984).
[CrossRef]

Nieminen, T. A.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[CrossRef]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).

Nieto-Vesperinas, M.

Novotny, L.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum with an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

Ormos, P.

Padgett, M. J.

A. T. O’Neil, M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum with an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

Polaert, H.

H. Polaert, G. Gréhan, G. Gousbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6, 921–931 (2004).
[CrossRef]

Rohrbach, A.

A. Rohrbach, E. L. Florin, E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. F. Kaschke, eds., Proc. SPIE4431, 75–86 (2001).
[CrossRef]

Rubinsztein-Dunlop, H.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

Stelzer, E. H. K.

A. Rohrbach, E. L. Florin, E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. F. Kaschke, eds., Proc. SPIE4431, 75–86 (2001).
[CrossRef]

Stockman, M. I.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Sugiura, T.

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser trapped particle,” Jpn. J. Appl. Phys., Part 1 33, L1725–L1727 (1994).
[CrossRef]

Wang, X.

X. Wang, X.-B. Wang, P. R. C. Cascoyne, “General expressions for dielectrophoretic force and electrostational torque derived using the Maxwell stress tensor,” J. Opt. Commun. 39, 277–295 (1997).

Wang, X.-B.

X. Wang, X.-B. Wang, P. R. C. Cascoyne, “General expressions for dielectrophoretic force and electrostational torque derived using the Maxwell stress tensor,” J. Opt. Commun. 39, 277–295 (1997).

Xie, X. S.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Comput. Phys. Commun. (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

J. Mod. Opt. (2)

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6, 921–931 (2004).
[CrossRef]

J. Opt. Commun. (1)

X. Wang, X.-B. Wang, P. R. C. Cascoyne, “General expressions for dielectrophoretic force and electrostational torque derived using the Maxwell stress tensor,” J. Opt. Commun. 39, 277–295 (1997).

Jpn. J. Appl. Phys., Part 1 (1)

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser trapped particle,” Jpn. J. Appl. Phys., Part 1 33, L1725–L1727 (1994).
[CrossRef]

Nature (London) (1)

D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
[CrossRef]

Opt. Commun. (3)

Y. Harada, T. Asakura, “Radiation forces on a dielectric particle in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

A. T. O’Neil, M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum with an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

H. Polaert, G. Gréhan, G. Gousbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[CrossRef]

P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984).
[CrossRef]

Phys. Rev. Lett. (3)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

Other (3)

A. Rohrbach, E. L. Florin, E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. F. Kaschke, eds., Proc. SPIE4431, 75–86 (2001).
[CrossRef]

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).

C. Hafner, Post-Modern Electromagnetics (Wiley, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Torque on elliptical cylinders located at the center of the beam waist oriented at 45° for (a) TE polarization and (b) TM polarization as a function of the size.

Fig. 2
Fig. 2

Torque on elliptical cylinders much smaller than the wavelength (r1=0.01λ) as a function of the orientation for (a) TE polarization and (b) TM polarization.

Fig. 3
Fig. 3

Spatial distribution of the torque for an elliptical cylinder much smaller than the wavelength (r1=0.01λ4) oriented at (a) θ=0° and (b) θ=45° for TE polarization.

Fig. 4
Fig. 4

Spatial distribution of the torque for an elliptical cylinder much smaller than the wavelength (r1=0.01λ4) oriented at (a) θ=0° and (b) θ=45° for TM polarization.

Fig. 5
Fig. 5

Torque on elliptical cylinders smaller than wavelength (rRef=0.1λ) as a function of the orientation for (a) TE polarization and (b) TM polarization.

Fig. 6
Fig. 6

Torque on elliptical cylinders of an intermediate size (rRef=0.3λ) as a function of the orientation for TE polarization.

Fig. 7
Fig. 7

Torque on elliptical cylinders of an intermediate size (rRef=0.3λ) as a function of the orientation for TM polarization.

Fig. 8
Fig. 8

Spatial distribution of the torque for an elliptical cylinder of an intermediate size (r1=0.3λ4) oriented at (a) θ=0° and (b) θ=45° for TM polarization.

Fig. 9
Fig. 9

Torque on elliptical cylinders of a size comparable to the wavelength (rRef=0.5λ) as a function of the orientation for (a) TE polarization and (b) TM polarization.

Fig. 10
Fig. 10

Spatial distribution of the torque for an elliptical cylinder of a size comparable to the wavelength (r1=0.5λ4) oriented at (a) θ=0° and (b) θ=45° for TE polarization.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Am=exp-i2πλ-m 2πλ z1/2Λ×-Λ/2Λ/2aInc(x)exp-im 2πΛ x1/2dx,
aInc(x)=E0 exp-xω2,
F=(T˜·n)dA,
F=(T˜·n)dA=S2 Re[(E·n)E*]-4 (E·E*)n+μ2 Re[(H·n)H*]-μ4 (H·H*)ndl,
τ=r×(T˜·n)dA,

Metrics