Abstract

We apply the boundary element method to the analysis of the plasmon response of systems that consist of coupled metallic nanoscatterers. For systems made of two or more objects, the response depends strongly on the individual particle behavior as well as on the separation distance and on the configuration of the particles relative to the illumination direction. By analyzing the behavior of these systems, we determine the smallest interaction distance at which the particles can be considered decoupled. We discriminate the two cases of particle systems consisting of scatterers with the same and different resonance wavelengths.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
    [CrossRef]
  2. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
  3. G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
    [CrossRef]
  4. C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  5. J. P. Kottmann, O. J. F. Martin, “Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,” Appl. Phys. B 73, 299–304 (2001).
    [CrossRef]
  6. W. H. Yang, G. C. Schatz, R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitary shape,” J. Chem. Phys. 103, 869–875 (1995).
    [CrossRef]
  7. J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
    [CrossRef]
  8. E. Moreno, D. E. Erni, C. Hafner, R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,” J. Opt. Soc. Am. A 19, 101–111 (2002).
  9. C. Rockstuhl, M. Salt, H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969–1973 (2003).
  10. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral method applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).
  11. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–825 (1985).
  12. J. P. Kottmann, O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
    [CrossRef]
  13. J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
    [CrossRef]
  14. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  15. M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  16. M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
    [CrossRef]
  17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef] [PubMed]
  18. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]
  19. H. Tamaru, H. Kuwata, H. T. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
    [CrossRef]
  20. J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
    [CrossRef] [PubMed]
  21. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
    [CrossRef]
  22. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2003 (4)

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

C. Rockstuhl, M. Salt, H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969–1973 (2003).

2002 (3)

E. Moreno, D. E. Erni, C. Hafner, R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,” J. Opt. Soc. Am. A 19, 101–111 (2002).

H. Tamaru, H. Kuwata, H. T. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).

2001 (5)

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,” Appl. Phys. B 73, 299–304 (2001).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
[CrossRef]

2000 (3)

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[CrossRef]

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
[CrossRef]

1999 (1)

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

W. H. Yang, G. C. Schatz, R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitary shape,” J. Chem. Phys. 103, 869–875 (1995).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–825 (1985).

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aeschlimann, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
[CrossRef]

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bourillot, E.

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dereux, A.

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

Ditlbacher, H.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
[CrossRef]

Erni, D. E.

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).

Fermo, P.

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).

Girard, C.

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

Hafner, C.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Herzig, H. P.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Huffmann, D. R.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, “Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,” Appl. Phys. B 73, 299–304 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
[CrossRef]

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25, 563–565 (2000).
[CrossRef]

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Liebisch, A.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Mait, J. N.

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, “Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,” Appl. Phys. B 73, 299–304 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Mirotznik, M. S.

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Moreno, E.

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–825 (1985).

Ohms, T.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Padeletti, G.

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

Porath, R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Prather, D. W.

Quinten, M.

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Rockstuhl, C.

Salt, M.

Scharte, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

Schatz, G. C.

W. H. Yang, G. C. Schatz, R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitary shape,” J. Chem. Phys. 103, 869–875 (1995).
[CrossRef]

Schider, B.

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Vahldieck, R.

Van Duyne, R. P.

W. H. Yang, G. C. Schatz, R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitary shape,” J. Chem. Phys. 103, 869–875 (1995).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).

Weeber, J. C.

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).

Yang, W. H.

W. H. Yang, G. C. Schatz, R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitary shape,” J. Chem. Phys. 103, 869–875 (1995).
[CrossRef]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Appl. Phys. A (1)

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

Appl. Phys. B (2)

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebisch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,” Appl. Phys. B 73, 299–304 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

H. Tamaru, H. Kuwata, H. T. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[CrossRef]

J. Chem. Phys. (1)

W. H. Yang, G. C. Schatz, R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitary shape,” J. Chem. Phys. 103, 869–875 (1995).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (3)

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, C. Girard, “Direct observation of localized surface plasmon coupling,” Phys. Rev. B 60, 5029–5033 (1999).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–825 (1985).

Other (1)

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SCS of two circular cylinders with r=25 nm at a separation distance of d=5 nm.

Fig. 2
Fig. 2

Near-field amplitude of the magnetic field for plasmons excited at two circular cylinders with r=25 nm at a separation distance of d=5 nm.

Fig. 3
Fig. 3

SCS of two circular cylinders with r=25 nm at different separation distances for an illumination direction of 0° in the upper figure and 90° in the lower figure.

Fig. 4
Fig. 4

Near-field amplitude of the magnetic field for a plasmon excited at two circular cylinders with r=25 nm at a separation distance of d=75 nm.

Fig. 5
Fig. 5

SCS of two elliptical cylinders with r1=10 nm and r2=20 nm at different separation distances for an illumination direction of 0° in the upper figure and 90° in the lower figure.

Fig. 6
Fig. 6

SCS of two elliptical cylinders with r1=10 nm and r2=20 nm that have a relative rotation of 90° at different separations for an illumination direction of 0° in the upper figure and 90° in the lower figure.

Fig. 7
Fig. 7

Near-field amplitude of the magnetic field for plasmons excited at two elliptical cylinders with r1=10 nm and r1=20 nm at a separation distance of d=35 nm for two different wavelengths.

Fig. 8
Fig. 8

SCS of nine elliptical cylinders as a function of the axis ratio.

Fig. 9
Fig. 9

Incoherent superposition of the SCS of four elliptical cylinders.

Fig. 10
Fig. 10

SCS for four coupled silver elliptical cylinders for different separation distances.

Tables (1)

Tables Icon

Table 1 Radii of the Analyzed Particles

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

0=umsc(ρm)+Cmumsc(ρm) GIm(ρm, ρm)n^Im-pImGIm(ρm, ρm)vmsc(ρm)dl+uminc(ρ)+Cmuminc(ρm) GIm(ρm, ρm)n^Im-pImGIm(ρm, ρm)vminc(ρm)dlforρI,
0=umsc(ρm)+Cmumsc(ρ) GO(ρm, ρm)n^Om+pOGO(ρm, ρm)vmsc(ρm)dlforρO.
uminc(ρm)=u0inc(ρm)+nmCnunsc(ρn) GO(ρm, ρn)n^In-pOGO(ρm, ρn)vnsc(ρn)dl.

Metrics