Abstract

A comprehensive and fully three-dimensional model of holographic lithography is used to predict more rigorously the geometry and transmission spectra of photonic crystals formed in Epon® SU-8 photoresist. It is the first effort known to the authors to incorporate physics of exposure, postexposure baking, and developing into three-dimensional models of photonic crystals. Optical absorption, reflections, standing waves, refraction, beam coherence, acid diffusion, resist shrinkage, and developing effects combine to distort lattices from their ideal geometry. These are completely neglected by intensity-threshold methods used throughout the literature to predict lattices. Numerical simulations compare remarkably well with experimental results for a face-centered-cube (FCC) photonic crystal. Absorption is shown to produce chirped lattices with broadened bandgaps. Reflections are shown to significantly alter lattice geometry and reduce image contrast. Through simulation, a diamond lattice is formed by multiple exposures, and a hybrid trigonal–FCC lattice is formed that exhibits properties of both component lattices.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [PubMed]
  3. M. J. A. Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped, photonic, layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).
  4. M. A. Kaliteevski, J. M. Martinez, D. Cassagne, J. P. Albert, “Appearance of photonic minibands in disordered photonic crystals,” J. Phys. Condens. Matter 15, 785–790 (2003).
  5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [PubMed]
  6. T. Baba, N. Fukaya, J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
  7. A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
  8. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express11, 1175–1196 (2003); www.opticsexpress.org .
    [PubMed]
  9. D. R. Solli, C. F. McCormick, R. Y. Chiao, J. M. Hickmann, “Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003).
  10. C. Luo, S. G. Johnson, J. D. Joannopoulos, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11, 746–754 (2003).
    [PubMed]
  11. D. M. Chambers, G. P. Nordin, S. Kim, “Fabrication and analysis of a three-layer stratified volume diffractive optical element high-efficiency grating,” Opt. Express 11, 27–38 (2003).
    [PubMed]
  12. C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).
  13. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
  14. C. K. Ullal, M. Maldovan, M. Wohlgemuth, E. L. Thomas, C. A. White, S. Yang, “Triply periodic bicontinuous structures through interference lithography: a level-set approach,” J. Opt. Soc. Am. A 20, 948–954 (2003).
  15. T. J. Suleski, B. Baggett, W. F. Delaney, C. Koehler, E. G. Johnson, “Fabrication of high-spatial-frequency gratings through computer-generated near-field holography,” Opt. Lett. 24, 602–604 (1999).
  16. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23, 1745–1747 (1998).
  17. Y. Ono, K. Ikemoto, “Fabrication of three-dimensional photonic crystals by holographic lithography,” in Diffractive Optics and Micro-Optics, Vol. 75 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 205–207.
  18. X. L. Yang, L. Z. Cai, Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three noncoplanar beams,” Opt. Express11, 1050–1055 (2003); www.opticsexpress.org .
    [PubMed]
  19. A. Feigel, Z. Kotler, B. Sfez, “Scalable interference lithography alignment for fabrication of three-dimensional photonic crystals,” Opt. Lett. 27, 746–748 (2002).
  20. A. Yen, E. H. Anderson, R. A. Ghanbari, M. L. Schattenburg, H. I. Smith, “Achromatic holographic configuration for 100-nm-period lithography,” Appl. Opt. 31, 4540–4545 (1992).
    [PubMed]
  21. L. Z. Cai, X. L. Yang, Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19, 2238–2244 (2002).
    [CrossRef]
  22. Y. Ono, K. Ikemoto, “Fabrication of arbitrary three-dimensional photonic crystals by four plane-waves interference,” in Micromachining Technology for Micro-optics and Nano-optics, E. G. Johnson, ed., Proc. SPIE4984, 70–78 (2003).
    [CrossRef]
  23. L. Z. Cai, X. L. Yang, Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
    [CrossRef]
  24. J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
    [CrossRef]
  25. I. R. Matias, I. Villar, F. J. Arregui, R. O. Claus, “Comparative study of the modeling of three-dimensional photonic bandgap structures,” J. Opt. Soc. Am. A 20, 644–654 (2003).
    [CrossRef]
  26. A. Chutinan, S. Noda, “Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal,” J. Opt. Soc. Am. B 16, 240–244 (1999).
    [CrossRef]
  27. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
    [CrossRef]
  28. R. C. Rumpf, E. G. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, A. El-Fatatry, ed., Proc. SPIE5346, 64–72 (2004).
    [CrossRef]
  29. K. Busch, S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
    [CrossRef]
  30. C. Xiaolan, S. H. Zaidi, S. R. J. Brueck, “Multiple exposure interference lithography—a novel approach to nanometer structures,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 390–391.
  31. S. C. Kitson, W. L. Barnes, J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photonics Technol. Lett. 8, 1662–1664 (1996).
    [CrossRef]
  32. A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  33. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley–IEEE Press, Piscataway, N.J., 2000).
  34. A. Erdmann, C. Kalus, T. Schmoller, A. Wolter, “Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 482–493 (2003).
    [CrossRef]
  35. A. Erdmann, N. Kachwala, “Enhancements in rigorous simulation of light diffraction from phase shift masks,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1156–1167 (2002).
    [CrossRef]
  36. A. Vial, A. Erdmann, T. Schmoeller, C. Kalus, “Modification of boundary conditions in the FDTD algorithm for EUV masks modeling,” in Photomask and Next-Generation Lithography Mask Technology IX, H. Kawahira, ed., Proc. SPIE4754, 890–899 (2002).
    [CrossRef]
  37. Ref. 32, pp. 194–224.
  38. Ref. 33, pp. 85–89.
  39. Z. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
    [CrossRef]
  40. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), pp. 28–32.
  41. A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
    [CrossRef]
  42. J. G. Proakis, D. G. Manolakis, Digital Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1996), pp. 425–433.
  43. S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, “Improved notch model for resist dissolution in lithography simulation,” in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE4345, 912–920 (2001).
    [CrossRef]
  44. “The SU-8 photoresist for MEMS,” http://aveclafaux.freeservers.com/SU-8.html .
  45. M. Khan, S. B. Bollepalli, F. Cerrina, “A semi-empirical resist dissolution model for submicron lithographies,” in MSM98: Technical Proceedings of the 1998 International Conference on Modeling and Simulation of Microsystems (Applied Computational Research Society, http://www.cr.org/index.html .), pp. 41–46.
  46. J. Malov, C. K. Kalus, H. Mullerke, T. Schmoller, R. Wildfeuer, “Accuracy of new analytical models for resist formation lithography,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1254–1265 (2002).
    [CrossRef]
  47. R. E. Jewett, P. I. Hagouel, A. R. Neureuther, T. Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977).
    [CrossRef]
  48. I. Karafyllidis, P. I. Hagouel, A. Thanailakis, A. R. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
    [CrossRef]
  49. E. W. Scheckler, N. N. Tam, A. K. Pfau, A. R. Neureuther, “An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification,” IEEE Trans. Comput.-Aided Des. 12, 1345–1356 (1993).
    [CrossRef]
  50. Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
    [CrossRef]
  51. F. H. Dill, A. R. Neureuther, J. A. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Trans. Electron Devices 22, 456–464 (1975).
    [CrossRef]
  52. S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
    [CrossRef]
  53. I. S. Maksymov, G. I. Churyumov, “2D computer modeling of waveguiding in 2D photonic crystals,” in Proceedings of Fourth Laser and Fiber Optical Networks Modeling Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 181–184.
  54. Ref. 29, pp. 614–616.
  55. B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).
  56. R. W. Ziolkowski, M. Tanaka, “Finite-difference time-domain modeling of dispersive-material photonic bandgap structures,” J. Opt. Soc. Am. A 16, 930–940 (1999).
    [CrossRef]
  57. R. M. Ridder, R. Stoffer, “Finite-difference time-domain modeling of photonic crystal structures,” in Proceedings of 2001 Third International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 22–25.
  58. Ref. 32, pp. 411–472.
  59. S. Dey, R. Mittra, “A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Guid. Wave Lett. 7, 273–275 (1997).
    [CrossRef]
  60. S. Dey, R. Mittra, “A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Opt. Tech. Lett. 17, 349–352 (1997).
    [CrossRef]
  61. S. Dey, R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
    [CrossRef]
  62. Ref. 29, p. 427.
  63. Ref. 29, pp. 413–415.
  64. P. Lalanne, “Effective medium theory applied to photonic crystals composed of cubic or square cylinders,” Appl. Opt. 35, 5369–5380 (1996).
    [CrossRef] [PubMed]

2003 (8)

M. J. A. Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped, photonic, layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).

M. A. Kaliteevski, J. M. Martinez, D. Cassagne, J. P. Albert, “Appearance of photonic minibands in disordered photonic crystals,” J. Phys. Condens. Matter 15, 785–790 (2003).

D. R. Solli, C. F. McCormick, R. Y. Chiao, J. M. Hickmann, “Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003).

C. Luo, S. G. Johnson, J. D. Joannopoulos, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11, 746–754 (2003).
[PubMed]

D. M. Chambers, G. P. Nordin, S. Kim, “Fabrication and analysis of a three-layer stratified volume diffractive optical element high-efficiency grating,” Opt. Express 11, 27–38 (2003).
[PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

C. K. Ullal, M. Maldovan, M. Wohlgemuth, E. L. Thomas, C. A. White, S. Yang, “Triply periodic bicontinuous structures through interference lithography: a level-set approach,” J. Opt. Soc. Am. A 20, 948–954 (2003).

I. R. Matias, I. Villar, F. J. Arregui, R. O. Claus, “Comparative study of the modeling of three-dimensional photonic bandgap structures,” J. Opt. Soc. Am. A 20, 644–654 (2003).
[CrossRef]

2002 (6)

L. Z. Cai, X. L. Yang, Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19, 2238–2244 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
[CrossRef]

S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
[CrossRef]

B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

A. Feigel, Z. Kotler, B. Sfez, “Scalable interference lithography alignment for fabrication of three-dimensional photonic crystals,” Opt. Lett. 27, 746–748 (2002).

2000 (2)

C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, A. R. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[CrossRef]

1999 (5)

1998 (2)

1997 (3)

S. Dey, R. Mittra, “A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Guid. Wave Lett. 7, 273–275 (1997).
[CrossRef]

S. Dey, R. Mittra, “A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Opt. Tech. Lett. 17, 349–352 (1997).
[CrossRef]

J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
[CrossRef]

1996 (3)

S. C. Kitson, W. L. Barnes, J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photonics Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

P. Lalanne, “Effective medium theory applied to photonic crystals composed of cubic or square cylinders,” Appl. Opt. 35, 5369–5380 (1996).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

1995 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

1993 (1)

E. W. Scheckler, N. N. Tam, A. K. Pfau, A. R. Neureuther, “An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification,” IEEE Trans. Comput.-Aided Des. 12, 1345–1356 (1993).
[CrossRef]

1992 (1)

1991 (1)

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[PubMed]

1977 (1)

R. E. Jewett, P. I. Hagouel, A. R. Neureuther, T. Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977).
[CrossRef]

1975 (1)

F. H. Dill, A. R. Neureuther, J. A. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Trans. Electron Devices 22, 456–464 (1975).
[CrossRef]

Agio, M.

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

Albert, J. P.

M. A. Kaliteevski, J. M. Martinez, D. Cassagne, J. P. Albert, “Appearance of photonic minibands in disordered photonic crystals,” J. Phys. Condens. Matter 15, 785–790 (2003).

Anderson, E. H.

Arregui, F. J.

Baba, T.

T. Baba, N. Fukaya, J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).

Baggett, B.

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), pp. 28–32.

Barnes, W. L.

S. C. Kitson, W. L. Barnes, J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photonics Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Bouadma, N.

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

Brueck, S. R. J.

C. Xiaolan, S. H. Zaidi, S. R. J. Brueck, “Multiple exposure interference lithography—a novel approach to nanometer structures,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 390–391.

Burns, S. D.

S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
[CrossRef]

Busch, K.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

K. Busch, S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[CrossRef]

Cai, L. Z.

Cassagne, D.

M. A. Kaliteevski, J. M. Martinez, D. Cassagne, J. P. Albert, “Appearance of photonic minibands in disordered photonic crystals,” J. Phys. Condens. Matter 15, 785–790 (2003).

Chambers, D. M.

Chelnokov, A.

C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

Chen, Y.

C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).

Chiao, R. Y.

D. R. Solli, C. F. McCormick, R. Y. Chiao, J. M. Hickmann, “Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003).

Churyumov, G. I.

I. S. Maksymov, G. I. Churyumov, “2D computer modeling of waveguiding in 2D photonic crystals,” in Proceedings of Fourth Laser and Fiber Optical Networks Modeling Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 181–184.

Chutinan, A.

Claus, R. O.

Conley, W. E.

J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
[CrossRef]

Cuisin, C.

C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).

Decanini, D.

C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).

Delaney, W. F.

Denecker, B.

B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).

Deubel, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Dey, S.

S. Dey, R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
[CrossRef]

S. Dey, R. Mittra, “A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Guid. Wave Lett. 7, 273–275 (1997).
[CrossRef]

S. Dey, R. Mittra, “A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Opt. Tech. Lett. 17, 349–352 (1997).
[CrossRef]

Dill, F. H.

F. H. Dill, A. R. Neureuther, J. A. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Trans. Electron Devices 22, 456–464 (1975).
[CrossRef]

Doan, V.

Dood, M. J. A.

M. J. A. Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped, photonic, layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).

Duzer, T.

R. E. Jewett, P. I. Hagouel, A. R. Neureuther, T. Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977).
[CrossRef]

Endo, M.

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Erdmann, A.

A. Erdmann, C. Kalus, T. Schmoller, A. Wolter, “Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 482–493 (2003).
[CrossRef]

A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
[CrossRef]

A. Erdmann, N. Kachwala, “Enhancements in rigorous simulation of light diffraction from phase shift masks,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1156–1167 (2002).
[CrossRef]

A. Vial, A. Erdmann, T. Schmoeller, C. Kalus, “Modification of boundary conditions in the FDTD algorithm for EUV masks modeling,” in Photomask and Next-Generation Lithography Mask Technology IX, H. Kawahira, ed., Proc. SPIE4754, 890–899 (2002).
[CrossRef]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

Feigel, A.

Flanagin, L.

S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
[CrossRef]

Fleming, J. G.

M. J. A. Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped, photonic, layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).

Freymann, G.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Fukaya, N.

T. Baba, N. Fukaya, J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).

Gelorme, J. D.

J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
[CrossRef]

Ghanbari, R. A.

Gouezigou, L.

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Hagouel, P. I.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, A. R. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[CrossRef]

R. E. Jewett, P. I. Hagouel, A. R. Neureuther, T. Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977).
[CrossRef]

Hayama, S.

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

Henke, W.

A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
[CrossRef]

Hickmann, J. M.

D. R. Solli, C. F. McCormick, R. Y. Chiao, J. M. Hickmann, “Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003).

Hirai, Y.

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

Holmes, S. J.

J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
[CrossRef]

Hoppe, W.

A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
[CrossRef]

S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, “Improved notch model for resist dissolution in lithography simulation,” in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE4345, 912–920 (2001).
[CrossRef]

Ikeda, K.

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

Ikemoto, K.

Y. Ono, K. Ikemoto, “Fabrication of three-dimensional photonic crystals by holographic lithography,” in Diffractive Optics and Micro-Optics, Vol. 75 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 205–207.

Y. Ono, K. Ikemoto, “Fabrication of arbitrary three-dimensional photonic crystals by four plane-waves interference,” in Micromachining Technology for Micro-optics and Nano-optics, E. G. Johnson, ed., Proc. SPIE4984, 70–78 (2003).
[CrossRef]

Jewett, R. E.

R. E. Jewett, P. I. Hagouel, A. R. Neureuther, T. Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977).
[CrossRef]

Jian, L.

Z. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11, 746–754 (2003).
[PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

John, S.

K. Busch, S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[PubMed]

Johnson, E. G.

T. J. Suleski, B. Baggett, W. F. Delaney, C. Koehler, E. G. Johnson, “Fabrication of high-spatial-frequency gratings through computer-generated near-field holography,” Opt. Lett. 24, 602–604 (1999).

R. C. Rumpf, E. G. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, A. El-Fatatry, ed., Proc. SPIE5346, 64–72 (2004).
[CrossRef]

Johnson, S. G.

Kachwala, N.

A. Erdmann, N. Kachwala, “Enhancements in rigorous simulation of light diffraction from phase shift masks,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1156–1167 (2002).
[CrossRef]

Kafesaki, M.

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

Kaliteevski, M. A.

M. A. Kaliteevski, J. M. Martinez, D. Cassagne, J. P. Albert, “Appearance of photonic minibands in disordered photonic crystals,” J. Phys. Condens. Matter 15, 785–790 (2003).

Kalus, C.

A. Erdmann, C. Kalus, T. Schmoller, A. Wolter, “Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 482–493 (2003).
[CrossRef]

A. Vial, A. Erdmann, T. Schmoeller, C. Kalus, “Modification of boundary conditions in the FDTD algorithm for EUV masks modeling,” in Photomask and Next-Generation Lithography Mask Technology IX, H. Kawahira, ed., Proc. SPIE4754, 890–899 (2002).
[CrossRef]

Kalus, C. K.

J. Malov, C. K. Kalus, H. Mullerke, T. Schmoller, R. Wildfeuer, “Accuracy of new analytical models for resist formation lithography,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1254–1265 (2002).
[CrossRef]

Karafyllidis, I.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, A. R. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[CrossRef]

Kim, S.

Kitson, S. C.

S. C. Kitson, W. L. Barnes, J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photonics Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

Klinkenbusch, L.

B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).

Knockaert, L.

B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).

Kock, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Koehler, C.

Kotler, Z.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

LaBianca, N. C.

J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
[CrossRef]

Lalanne, P.

Lian, K.

Z. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

Ling, Z.

Z. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

Lourtioz, J. M.

C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).

Luo, C.

Maksymov, I. S.

I. S. Maksymov, G. I. Churyumov, “2D computer modeling of waveguiding in 2D photonic crystals,” in Proceedings of Fourth Laser and Fiber Optical Networks Modeling Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 181–184.

Maldovan, M.

Malov, J.

J. Malov, C. K. Kalus, H. Mullerke, T. Schmoller, R. Wildfeuer, “Accuracy of new analytical models for resist formation lithography,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1254–1265 (2002).
[CrossRef]

Manolakis, D. G.

J. G. Proakis, D. G. Manolakis, Digital Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1996), pp. 425–433.

Martinez, J. M.

M. A. Kaliteevski, J. M. Martinez, D. Cassagne, J. P. Albert, “Appearance of photonic minibands in disordered photonic crystals,” J. Phys. Condens. Matter 15, 785–790 (2003).

Matias, I. R.

McCormick, C. F.

D. R. Solli, C. F. McCormick, R. Y. Chiao, J. M. Hickmann, “Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003).

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Mittra, R.

S. Dey, R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
[CrossRef]

S. Dey, R. Mittra, “A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Opt. Tech. Lett. 17, 349–352 (1997).
[CrossRef]

S. Dey, R. Mittra, “A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Guid. Wave Lett. 7, 273–275 (1997).
[CrossRef]

Mullerke, H.

J. Malov, C. K. Kalus, H. Mullerke, T. Schmoller, R. Wildfeuer, “Accuracy of new analytical models for resist formation lithography,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1254–1265 (2002).
[CrossRef]

Neureuther, A. R.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, A. R. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[CrossRef]

E. W. Scheckler, N. N. Tam, A. K. Pfau, A. R. Neureuther, “An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification,” IEEE Trans. Comput.-Aided Des. 12, 1345–1356 (1993).
[CrossRef]

R. E. Jewett, P. I. Hagouel, A. R. Neureuther, T. Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977).
[CrossRef]

F. H. Dill, A. R. Neureuther, J. A. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Trans. Electron Devices 22, 456–464 (1975).
[CrossRef]

Noda, S.

Nomura, N.

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

Nordin, G. P.

Olyslager, F.

B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).

Ono, Y.

Y. Ono, K. Ikemoto, “Fabrication of arbitrary three-dimensional photonic crystals by four plane-waves interference,” in Micromachining Technology for Micro-optics and Nano-optics, E. G. Johnson, ed., Proc. SPIE4984, 70–78 (2003).
[CrossRef]

Y. Ono, K. Ikemoto, “Fabrication of three-dimensional photonic crystals by holographic lithography,” in Diffractive Optics and Micro-Optics, Vol. 75 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 205–207.

Pavelchek, E.

S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, “Improved notch model for resist dissolution in lithography simulation,” in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE4345, 912–920 (2001).
[CrossRef]

Pfau, A. K.

E. W. Scheckler, N. N. Tam, A. K. Pfau, A. R. Neureuther, “An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification,” IEEE Trans. Comput.-Aided Des. 12, 1345–1356 (1993).
[CrossRef]

Polman, A.

M. J. A. Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped, photonic, layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).

Proakis, J. G.

J. G. Proakis, D. G. Manolakis, Digital Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1996), pp. 425–433.

Richter, E.

A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
[CrossRef]

Ridder, R. M.

R. M. Ridder, R. Stoffer, “Finite-difference time-domain modeling of photonic crystal structures,” in Proceedings of 2001 Third International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 22–25.

Robertson, S.

A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
[CrossRef]

S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, “Improved notch model for resist dissolution in lithography simulation,” in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE4345, 912–920 (2001).
[CrossRef]

Rumpf, R. C.

R. C. Rumpf, E. G. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, A. El-Fatatry, ed., Proc. SPIE5346, 64–72 (2004).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photonics Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

Sasago, M.

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

Schattenburg, M. L.

Scheckler, E. W.

E. W. Scheckler, N. N. Tam, A. K. Pfau, A. R. Neureuther, “An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification,” IEEE Trans. Comput.-Aided Des. 12, 1345–1356 (1993).
[CrossRef]

Schmid, G. M.

S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
[CrossRef]

Schmoeller, T.

A. Vial, A. Erdmann, T. Schmoeller, C. Kalus, “Modification of boundary conditions in the FDTD algorithm for EUV masks modeling,” in Photomask and Next-Generation Lithography Mask Technology IX, H. Kawahira, ed., Proc. SPIE4754, 890–899 (2002).
[CrossRef]

Schmoller, T.

J. Malov, C. K. Kalus, H. Mullerke, T. Schmoller, R. Wildfeuer, “Accuracy of new analytical models for resist formation lithography,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1254–1265 (2002).
[CrossRef]

A. Erdmann, C. Kalus, T. Schmoller, A. Wolter, “Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 482–493 (2003).
[CrossRef]

Schwartz, B. J.

Sfez, B.

Shaw, J. M.

J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
[CrossRef]

Smith, H. I.

Solli, D. R.

D. R. Solli, C. F. McCormick, R. Y. Chiao, J. M. Hickmann, “Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003).

Soukoulis, C. M.

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

Stoffer, R.

R. M. Ridder, R. Stoffer, “Finite-difference time-domain modeling of photonic crystal structures,” in Proceedings of 2001 Third International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 22–25.

Suleski, T. J.

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley–IEEE Press, Piscataway, N.J., 2000).

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Talneau, A.

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

Tam, N. N.

E. W. Scheckler, N. N. Tam, A. K. Pfau, A. R. Neureuther, “An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification,” IEEE Trans. Comput.-Aided Des. 12, 1345–1356 (1993).
[CrossRef]

Tanaka, M.

Thanailakis, A.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, A. R. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[CrossRef]

Thomas, E. L.

Tollkuhn, B.

A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
[CrossRef]

Tomida, S.

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

Tsiartas, P. C.

S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
[CrossRef]

Tuttle, J. A.

F. H. Dill, A. R. Neureuther, J. A. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Trans. Electron Devices 22, 456–464 (1975).
[CrossRef]

Ullal, C. K.

Vial, A.

A. Vial, A. Erdmann, T. Schmoeller, C. Kalus, “Modification of boundary conditions in the FDTD algorithm for EUV masks modeling,” in Photomask and Next-Generation Lithography Mask Technology IX, H. Kawahira, ed., Proc. SPIE4754, 890–899 (2002).
[CrossRef]

Villar, I.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

Vrijen, R.

Walker, E. J.

F. H. Dill, A. R. Neureuther, J. A. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Trans. Electron Devices 22, 456–464 (1975).
[CrossRef]

Wang, Y. R.

Wegener, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

White, C. A.

Wildfeuer, R.

J. Malov, C. K. Kalus, H. Mullerke, T. Schmoller, R. Wildfeuer, “Accuracy of new analytical models for resist formation lithography,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1254–1265 (2002).
[CrossRef]

S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, “Improved notch model for resist dissolution in lithography simulation,” in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE4345, 912–920 (2001).
[CrossRef]

Willson, C. G.

S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
[CrossRef]

Witzgall, G.

Wohlgemuth, M.

Wolter, A.

A. Erdmann, C. Kalus, T. Schmoller, A. Wolter, “Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 482–493 (2003).
[CrossRef]

Xiaolan, C.

C. Xiaolan, S. H. Zaidi, S. R. J. Brueck, “Multiple exposure interference lithography—a novel approach to nanometer structures,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 390–391.

Yablonovitch, E.

Yang, S.

Yang, X. L.

Yen, A.

Yonekura, J.

T. Baba, N. Fukaya, J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).

Zaidi, S. H.

C. Xiaolan, S. H. Zaidi, S. R. J. Brueck, “Multiple exposure interference lithography—a novel approach to nanometer structures,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 390–391.

Ziolkowski, R. W.

Zutter, D.

B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. Talneau, L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

Electron. Lett. (1)

T. Baba, N. Fukaya, J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).

IBM J. Res. Dev. (1)

J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81–94 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. R. Solli, C. F. McCormick, R. Y. Chiao, J. M. Hickmann, “Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003).

IEEE Microwave Guid. Wave Lett. (1)

S. Dey, R. Mittra, “A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Guid. Wave Lett. 7, 273–275 (1997).
[CrossRef]

IEEE Microwave Opt. Tech. Lett. (1)

S. Dey, R. Mittra, “A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Opt. Tech. Lett. 17, 349–352 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. C. Kitson, W. L. Barnes, J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photonics Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

B. Denecker, F. Olyslager, D. Zutter, L. Klinkenbusch, L. Knockaert, “Efficient analysis of photonic crystal structures using a novel FDTD-technique,” IEEE Trans. Antennas Propag. 4, 344–347 (2002).

IEEE Trans. Comput.-Aided Des. (2)

E. W. Scheckler, N. N. Tam, A. K. Pfau, A. R. Neureuther, “An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification,” IEEE Trans. Comput.-Aided Des. 12, 1345–1356 (1993).
[CrossRef]

Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, N. Nomura, “Three-dimensional resist process simulator PEACE (photo and electron beam lithography analyzing computer engineering system),” IEEE Trans. Comput.-Aided Des. 10, 802–807 (1991).
[CrossRef]

IEEE Trans. Electron Devices (1)

F. H. Dill, A. R. Neureuther, J. A. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Trans. Electron Devices 22, 456–464 (1975).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. Dey, R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
[CrossRef]

IEEE Trans. Semicond. Manuf. (1)

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, A. R. Neureuther, “An efficient photoresist development simulator based on cellular automata with experimental verification,” IEEE Trans. Semicond. Manuf. 13, 61–75 (2000).
[CrossRef]

J. Appl. Phys. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

M. A. Kaliteevski, J. M. Martinez, D. Cassagne, J. P. Albert, “Appearance of photonic minibands in disordered photonic crystals,” J. Phys. Condens. Matter 15, 785–790 (2003).

J. Vac. Sci. Technol. B (2)

C. Cuisin, A. Chelnokov, J. M. Lourtioz, D. Decanini, Y. Chen, “Fabrication of three-dimensional photonic crystal structures with submicrometer resolution by x-ray lithography,” J. Vac. Sci. Technol. B 18, 3505–3509 (2000).

S. D. Burns, G. M. Schmid, P. C. Tsiartas, C. G. Willson, L. Flanagin, “Advancements to the critical ionization dissolution model,” J. Vac. Sci. Technol. B 20, 537–543 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (1)

M. J. A. Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped, photonic, layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).

Phys. Rev. E (1)

K. Busch, S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[PubMed]

Polym. Eng. Sci. (1)

R. E. Jewett, P. I. Hagouel, A. R. Neureuther, T. Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977).
[CrossRef]

Other (27)

Ref. 29, p. 427.

Ref. 29, pp. 413–415.

C. Xiaolan, S. H. Zaidi, S. R. J. Brueck, “Multiple exposure interference lithography—a novel approach to nanometer structures,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 390–391.

R. C. Rumpf, E. G. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, A. El-Fatatry, ed., Proc. SPIE5346, 64–72 (2004).
[CrossRef]

Y. Ono, K. Ikemoto, “Fabrication of arbitrary three-dimensional photonic crystals by four plane-waves interference,” in Micromachining Technology for Micro-optics and Nano-optics, E. G. Johnson, ed., Proc. SPIE4984, 70–78 (2003).
[CrossRef]

I. S. Maksymov, G. I. Churyumov, “2D computer modeling of waveguiding in 2D photonic crystals,” in Proceedings of Fourth Laser and Fiber Optical Networks Modeling Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 181–184.

Ref. 29, pp. 614–616.

R. M. Ridder, R. Stoffer, “Finite-difference time-domain modeling of photonic crystal structures,” in Proceedings of 2001 Third International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 22–25.

Ref. 32, pp. 411–472.

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express11, 1175–1196 (2003); www.opticsexpress.org .
[PubMed]

Y. Ono, K. Ikemoto, “Fabrication of three-dimensional photonic crystals by holographic lithography,” in Diffractive Optics and Micro-Optics, Vol. 75 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 205–207.

X. L. Yang, L. Z. Cai, Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three noncoplanar beams,” Opt. Express11, 1050–1055 (2003); www.opticsexpress.org .
[PubMed]

A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley–IEEE Press, Piscataway, N.J., 2000).

A. Erdmann, C. Kalus, T. Schmoller, A. Wolter, “Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 482–493 (2003).
[CrossRef]

A. Erdmann, N. Kachwala, “Enhancements in rigorous simulation of light diffraction from phase shift masks,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1156–1167 (2002).
[CrossRef]

A. Vial, A. Erdmann, T. Schmoeller, C. Kalus, “Modification of boundary conditions in the FDTD algorithm for EUV masks modeling,” in Photomask and Next-Generation Lithography Mask Technology IX, H. Kawahira, ed., Proc. SPIE4754, 890–899 (2002).
[CrossRef]

Ref. 32, pp. 194–224.

Ref. 33, pp. 85–89.

Z. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), pp. 28–32.

A. Erdmann, W. Henke, S. Robertson, E. Richter, B. Tollkuhn, W. Hoppe, “Comparison of simulation approaches for chemically amplified resists,” in Lithography for Semiconductor Manufacturing II, C. A. Mack, T. Stevenson, eds., Proc. SPIE4404, 99–110 (2001).
[CrossRef]

J. G. Proakis, D. G. Manolakis, Digital Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1996), pp. 425–433.

S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, “Improved notch model for resist dissolution in lithography simulation,” in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE4345, 912–920 (2001).
[CrossRef]

“The SU-8 photoresist for MEMS,” http://aveclafaux.freeservers.com/SU-8.html .

M. Khan, S. B. Bollepalli, F. Cerrina, “A semi-empirical resist dissolution model for submicron lithographies,” in MSM98: Technical Proceedings of the 1998 International Conference on Modeling and Simulation of Microsystems (Applied Computational Research Society, http://www.cr.org/index.html .), pp. 41–46.

J. Malov, C. K. Kalus, H. Mullerke, T. Schmoller, R. Wildfeuer, “Accuracy of new analytical models for resist formation lithography,” in Optical Microlithography XV, A. Yen, ed., Proc. SPIE4691, 1254–1265 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Block diagram of a comprehensive model to simulate the fabrication and behavior of photonic crystals formed by holographic lithography. Factors accounted for in each step are listed next to the blocks.

Fig. 2
Fig. 2

Beam configuration for holographic exposure of a photonic crystal in SU-8. LP, linear polarization; CP, circular polarization.

Fig. 3
Fig. 3

Aerial image of a FCC lattice exposed in a small portion of resist.

Fig. 4
Fig. 4

Small portion of resist at the surface at incremental times during the development model.

Fig. 5
Fig. 5

Comparison of FCC photonic crystal in SU-8 and transmission spectra generated by comprehensive modeling and a simple threshold scheme. Position and width of bandgap are significantly different.

Fig. 6
Fig. 6

Cross section of three photonic crystals with varying degrees of chirp. Higher absorption during exposure produces stronger lattice chirp.

Fig. 7
Fig. 7

Effect of chirped lattice on transmission spectra. Lattices with stronger chirp have broader bandgaps.

Fig. 8
Fig. 8

Effect of reflections during exposure on transmission spectra. Position and shape of bandgap are altered or the bandgap is completely eliminated.

Fig. 9
Fig. 9

Relation of lattice geometry to image contrast and dissolution curve of the resist. The alignment between exposure dose modulation and the notch region determine the local fill factor of the crystal.

Fig. 10
Fig. 10

Comparison of diamond photonic crystal in SU-8 and transmission spectra generated by comprehensive modeling and a simple threshold scheme. Position and width of bandgap are significantly different.

Fig. 11
Fig. 11

Comparison of trigonal photonic crystal in SU-8 and transmission spectra generated by comprehensive modeling and a simple threshold scheme. Position and width of bandgap are significantly different. Exposure dose in comprehensive model was increased by 15% to increase fill factor and move bandgap into the 600–900-nm range for comparison.

Fig. 12
Fig. 12

Hybrid lattices formed by successive exposures of FCC and trigonal symmetries. Different hybrid lattices were formed by changing the relative doses of the two exposures. Percentages indicate dose relative to recipe for pure crystal.

Fig. 13
Fig. 13

Hybrid photonic crystal (50% FCC, 50% trigonal) formed in SU-8 and resulting transmission spectra. Transmission spectrum has a double bandgap showing properties of both component lattices.

Tables (1)

Tables Icon

Table 1 Summary of Parameter Values

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Pd=σE2=ση02E˜2
ξ(i, j, k; t)=ξ(i, j, k; t-Δt)+[E˜x2(t)+E˜y2(t)+E˜z2(t)]|i,j,k.
ξA(i, j, k)=Texpcση02ΔtNλ0 ξ(i, j, k),
d=Rt.
M/t=(DM),
M/t=D(2M).
g(r)=1(2πρeff2)1/2exp-r22ρeff2.
ξL=ξAg.
Rn(E¯)=Rmax(1-E¯)N(an+1)(1-E¯)Nnotchan+(1-E¯)Nnotch+RminRminE¯-1RmaxE¯-1 1-(an+1)(1-E¯)Nnotchan+(1-E¯)Nnotch,
an=Nnotch+1Nnotch-1 (1-E¯th)Nnotch.
E¯=ξL/ξmax.
Rp(E¯)=RmaxE¯N(ap+1)E¯Nnotchap+E¯Nnotch+RminRminE¯RmaxE¯ 1-(ap+1)E¯Nnotchap+E¯Nnotch,
ap=Nnotch+1Nnotch-1 E¯thNnotch.
Δxs=(1-sx)Δx,
Δys=(1-sy)Δy,
Δzs=(1-sz)Δz.
λBragg=2neffΛz,
neff2fnres2+(1-f)nfill2,

Metrics