Abstract

We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle θs. Our maps display those celestial areas at which the deviation Δα= |αmeas-αRayleigh| is below the threshold αthres=5°, where αmeas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and αRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of Δα=5°) the E-vector alignment of skylight. Depending on θs, r is high for clear skies, especially for low solar elevations (40%<r<70% for θs13°). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax=69% for θs=0°). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial α pattern.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions

Balázs Bernáth, Miklós Blahó, Ádám Egri, András Barta, György Kriska, and Gábor Horváth
Appl. Opt. 52(25) 6185-6194 (2013)

Accuracy of sun localization in the second step of sky-polarimetric Viking navigation for north determination: a planetarium experiment

Alexandra Farkas, Dénes Száz, Ádám Egri, Miklós Blahó, András Barta, Dóra Nehéz, Balázs Bernáth, and Gábor Horváth
J. Opt. Soc. Am. A 31(7) 1645-1656 (2014)

Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation

András Barta, Victor Benno Meyer-Rochow, and Gábor Horváth
J. Opt. Soc. Am. A 22(6) 1023-1034 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription