Abstract

A Mueller matrix for scattering by a rough plane surface of a glass hemisphere was simulated by using a micro-facet model. The algorithms are formulated in vector representation in terms of the input and output directions. The single-facet scattering simulation used the results of the Kirchhoff integral for medium rough surfaces with exponential height distribution. Scatterings by two or more facets were also simulated. For a fixed angle between the incident and the detection directions, the transmission scattering and its polarization properties were symmetric when plotted against the off-specular incident angle. The single-facet model generated no depolarization or polarization change. When double-facet scattering was included, polarizations were changed appreciably while depolarization was still very small. Depolarization increased appreciably when scattering by higher orders was included. The simulated results that include all orders of scattering fit excellently to the measured scattering transmittance and its polarization and depolarization.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (62)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription