Abstract

We address the problem of plane-wave scattering and Wood’s anomalies at two-dimensional (2-D) periodic surfaces by employing a simplified grating model given by a planar surface whose impedance varies sinusoidally along two orthogonal directions. We obtain a rigorous solution to the corresponding boundary-value problem in terms of an infinite set of coupled recurrence equations. When truncated for computational purposes, this solution is in the form of a banded matrix, which we solve by direct methods and also by a highly efficient iterated matrix procedure. Numerical results are presented for symmetric and nonsymmetric incidence cases, and we show that certain diffracted fields do not depolarize in the former case. The expected Wood’s anomalies of both Rayleigh and leaky-wave types are confirmed, and their location in wavelength space is numerically demonstrated for 2-D periodic configurations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (86)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription