Abstract

Bragg gratings were fabricated in an Sn–Er–Ge-codoped silica fiber with a phase mask and ultraviolet radiation from a 248-nm KrF excimer laser. The photosensitivity of the fiber was examined by studying the initial growth rate of the gratings written into it. The thermal stability of the gratings was investigated and modeled in terms of both the refractive-index modulation and the effective refractive index of the fiber core. It was shown that the temperature-induced irreversible shift in the Bragg wavelength could not be predicted by the isothermal decay of the refractive-index modulation. Finally, the potential of the gratings written into the fiber is discussed in terms of their use in high-temperature-sensing applications.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped Fiber Bragg grating

Suchandan Pal, Jharna Mandal, Tong Sun, and Kenneth T. V. Grattan
Appl. Opt. 42(12) 2188-2197 (2003)

Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber

Dominique Razafimahatratra, Pierre Niay, Marc Douay, Bertrand Poumellec, and Isabelle Riant
Appl. Opt. 39(12) 1924-1933 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription