Abstract

Bragg gratings were fabricated in an Sn–Er–Ge-codoped silica fiber with a phase mask and ultraviolet radiation from a 248-nm KrF excimer laser. The photosensitivity of the fiber was examined by studying the initial growth rate of the gratings written into it. The thermal stability of the gratings was investigated and modeled in terms of both the refractive-index modulation and the effective refractive index of the fiber core. It was shown that the temperature-induced irreversible shift in the Bragg wavelength could not be predicted by the isothermal decay of the refractive-index modulation. Finally, the potential of the gratings written into the fiber is discussed in terms of their use in high-temperature-sensing applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).
  2. R. Kashyap, Fiber Bragg Gratings, Optics and Photonics Series (Academic, San Diego, Calif., 1999).
  3. K. T. V. Grattan, B. T. Meggitt, eds., Optical Fiber Sensor Technology, Vol. 2 (Chapman and Hall, London, 1998).
  4. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
    [CrossRef]
  5. P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
    [CrossRef]
  6. S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
    [CrossRef]
  7. L. Dong, W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron co-doped germanosilicate fiber,” Appl. Opt. 36, 8222–8226 (1997).
    [CrossRef]
  8. S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003).
    [CrossRef] [PubMed]
  9. I. Riant, B. Poumellec, “Thermal decay of gratings written in hydrogen-loaded germanosilicate fibers,” Electron. Lett. 34, 1603–1604 (1998).
    [CrossRef]
  10. L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
    [CrossRef]
  11. G. Brambilla, V. Pruneri, L. Reekie, “Photorefractive index gratings in SnO2:SiO2 optical fibers,” Appl. Phys. Lett. 76, 807–809 (2000).
    [CrossRef]
  12. G. Brambilla, V. Pruneri, “Enhanced photorefractivity in tin-doped silica optical fibers (Review),” IEEE J. Sel. Top. Quantum Electron. 7, 403–408 (2001).
    [CrossRef]
  13. G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
    [CrossRef]
  14. K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998).
    [CrossRef]
  15. T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  16. S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
    [CrossRef]
  17. K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
    [CrossRef]
  18. Q. Wang, A. Hidayat, P. Niay, M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078–1083 (2000).
    [CrossRef]
  19. T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2002), pp. 147–149.
  20. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
    [CrossRef]
  21. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).
  22. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
    [CrossRef]
  23. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
    [CrossRef]
  24. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt. 40, 2632–2641 (2002).
    [CrossRef]
  25. Y. Imai, T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4, 117–120 (1997).
    [CrossRef]
  26. S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
    [CrossRef]
  27. J. Rathje, M. Kristensen, J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
    [CrossRef]
  28. M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.
  29. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19, 1759–1765 (2002).
    [CrossRef]
  30. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
    [CrossRef]

2003 (2)

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003).
[CrossRef] [PubMed]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

2002 (3)

2001 (2)

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

G. Brambilla, V. Pruneri, “Enhanced photorefractivity in tin-doped silica optical fibers (Review),” IEEE J. Sel. Top. Quantum Electron. 7, 403–408 (2001).
[CrossRef]

2000 (4)

1998 (5)

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998).
[CrossRef]

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

I. Riant, B. Poumellec, “Thermal decay of gratings written in hydrogen-loaded germanosilicate fibers,” Electron. Lett. 34, 1603–1604 (1998).
[CrossRef]

1997 (4)

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

L. Dong, W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron co-doped germanosilicate fiber,” Appl. Opt. 36, 8222–8226 (1997).
[CrossRef]

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Y. Imai, T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4, 117–120 (1997).
[CrossRef]

1995 (2)

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

1993 (2)

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Ainslie, B. J.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Albert, J.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

Armitage, J. R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Baker, S. R.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Baker, V.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Baxter, G. W.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

Bennion, I.

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Bilodeau, F.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

Brambilla, G.

G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
[CrossRef]

G. Brambilla, V. Pruneri, “Enhanced photorefractivity in tin-doped silica optical fibers (Review),” IEEE J. Sel. Top. Quantum Electron. 7, 403–408 (2001).
[CrossRef]

G. Brambilla, V. Pruneri, L. Reekie, “Photorefractive index gratings in SnO2:SiO2 optical fibers,” Appl. Phys. Lett. 76, 807–809 (2000).
[CrossRef]

Campbell, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Chisholm, K. E.

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Collins, S. F.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

Copeland, L. R.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.

Cruz, J. L.

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).

Dong, L.

L. Dong, W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron co-doped germanosilicate fiber,” Appl. Opt. 36, 8222–8226 (1997).
[CrossRef]

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
[CrossRef]

Douay, M.

Dussardier, B.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Fokine, M.

Forsyth, D. I.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Goodchild, D.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Grattan, K. T. V.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003).
[CrossRef] [PubMed]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2002), pp. 147–149.

Guo, J. Z. Y.

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Guofu, Q.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Hidayat, A.

Hill, K. O.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

Hokazono, T.

Y. Imai, T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4, 117–120 (1997).
[CrossRef]

Imada, Y.

K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998).
[CrossRef]

Imai, Y.

Y. Imai, T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4, 117–120 (1997).
[CrossRef]

Imamura, K.

K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998).
[CrossRef]

Jackson, D. C.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

Judkins, J. B.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.

Kalli, K.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).

Kannan, S.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings, Optics and Photonics Series (Academic, San Diego, Calif., 1999).

Kasyap, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Kristensen, M.

J. Rathje, M. Kristensen, J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

Lemaire, P. J.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Liu, W. F.

LuValle, M. J.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.

Malo, B.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

Mandal, J.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003).
[CrossRef] [PubMed]

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2002), pp. 147–149.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Monnom, G.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

Monoroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Nakai, T.

K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998).
[CrossRef]

Niay, P.

Othonos, A.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).

Pal, S.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003).
[CrossRef] [PubMed]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2002), pp. 147–149.

Payne, D. N.

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
[CrossRef]

Pedersen, J. E.

J. Rathje, M. Kristensen, J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

Poumellec, B.

Pruneri, V.

G. Brambilla, V. Pruneri, “Enhanced photorefractivity in tin-doped silica optical fibers (Review),” IEEE J. Sel. Top. Quantum Electron. 7, 403–408 (2001).
[CrossRef]

G. Brambilla, V. Pruneri, L. Reekie, “Photorefractive index gratings in SnO2:SiO2 optical fibers,” Appl. Phys. Lett. 76, 807–809 (2000).
[CrossRef]

Rathje, J.

J. Rathje, M. Kristensen, J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

Razafimahatratra, D.

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Reekie, L.

G. Brambilla, V. Pruneri, L. Reekie, “Photorefractive index gratings in SnO2:SiO2 optical fibers,” Appl. Phys. Lett. 76, 807–809 (2000).
[CrossRef]

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
[CrossRef]

Riant, I.

Rourke, H. N.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Rutt, H.

G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
[CrossRef]

Sudo, Y.

K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998).
[CrossRef]

Sugden, K.

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Sun, T.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003).
[CrossRef] [PubMed]

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2002), pp. 147–149.

Theriault, S.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

Wade, S. A.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Wang, Q.

Williams, D. L.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

Xu, M. G.

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Jackson, S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67, 3529–3531 (1995).
[CrossRef]

G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
[CrossRef]

G. Brambilla, V. Pruneri, L. Reekie, “Photorefractive index gratings in SnO2:SiO2 optical fibers,” Appl. Phys. Lett. 76, 807–809 (2000).
[CrossRef]

Bell Labs Tech. J. (1)

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J., July–September1998, pp. 139–147.

Electron. Lett. (4)

K. Imamura, T. Nakai, Y. Sudo, Y. Imada, “High reliability tin-codoped germanosilicate fibre Bragg gratingsfabricated by direct writing method,” Electron. Lett. 34, 1772–1773 (1998).
[CrossRef]

I. Riant, B. Poumellec, “Thermal decay of gratings written in hydrogen-loaded germanosilicate fibers,” Electron. Lett. 34, 1603–1604 (1998).
[CrossRef]

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kasyap, R. Campbell, “Enhanced UV-photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2-doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Brambilla, V. Pruneri, “Enhanced photorefractivity in tin-doped silica optical fibers (Review),” IEEE J. Sel. Top. Quantum Electron. 7, 403–408 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, 1048–1050 (1995).
[CrossRef]

J. Appl. Phys. (2)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Rathje, M. Kristensen, J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

J. Lightwave Technol. (3)

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Q. Wang, A. Hidayat, P. Niay, M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078–1083 (2000).
[CrossRef]

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Opt. Rev. (1)

Y. Imai, T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4, 117–120 (1997).
[CrossRef]

Rev. Sci. Instrum. (2)

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain,” Rev. Sci. Instrum. 74, 4858–4862 (2003).
[CrossRef]

Other (5)

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2002), pp. 147–149.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).

R. Kashyap, Fiber Bragg Gratings, Optics and Photonics Series (Academic, San Diego, Calif., 1999).

K. T. V. Grattan, B. T. Meggitt, eds., Optical Fiber Sensor Technology, Vol. 2 (Chapman and Hall, London, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Variation of the amplitude of refractive-index modulation and the effective refractive index with the UV exposure time for a laser fluence of ∼180 mJ/cm2/pulse. The inset shows the evolution of the grating reflectivity and the Bragg wavelength shift during the growth of the FBG.

Fig. 2
Fig. 2

Dependence of the initial grating growth rate on the laser pulse fluence. The solid line is the linear regression with a slope of 0.97.

Fig. 3
Fig. 3

Isothermal decay of the FBGs written in an Sn–Er–Ge-codoped fiber with time in terms of the NICC at various temperatures.

Fig. 4
Fig. 4

Linear fit for the power-law decay coefficient α.

Fig. 5
Fig. 5

Exponential fit for the power-law factor A.

Fig. 6
Fig. 6

NICC as a function of demarcation energy Ed for the grating. The frequency term (ν) used for this plot is 1.54×1013 Hz.

Fig. 7
Fig. 7

Activation energy distribution plotted from the slope of Fig. 6. The symbols represent the demarcation energies actually sampled by the experiment.

Fig. 8
Fig. 8

Comparison of activation energy distribution of the density of states for B–Ge-(see Refs. 6 and 8), Ge-(see Ref. 15), and Sn–Er–Ge-codoped fibers. The inset shows the normalized reflectivities of the gratings written in the respective fibers after ∼24 h of annealing at each temperature.

Fig. 9
Fig. 9

Thermal degradation of the FBGs with time in terms of the effective refractive index at various temperatures. The inset shows the corresponding blueshift in the Bragg wavelengths.

Fig. 10
Fig. 10

Thermal response and thermal sensitivity of the gratings written in an Sn–Er–Ge-codoped fiber after proper annealing of the sample.

Fig. 11
Fig. 11

Fluorescence spectra obtained at various temperatures from ∼10-cm long Sn–Er–Ge-codoped fiber. The dip in the spectra indicates the grating written into the fiber.

Fig. 12
Fig. 12

Prediction of thermal decay of the grating at 500 °C according to the power law and master aging curve, along with the blueshift of the Bragg wavelength of the grating.  

Fig. 13
Fig. 13

Variation of the visibility factor (Δnmod/Δneff) of the gratings before and after annealing at various temperatures and the variation of visibility factor with time during the growth of the grating.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δnmod=[λ/πLn(V)]tanh-1(R)1/2,
Δneff=(Δλb)/2Λ,
Δnmod=(Ip)γt,
G=d/dt(Δnmod)=(Ip)γ,
R=(1-Tmin),
ICC=tanh-1(R1/2),
η=[tanh-1(Rt,T1/2)/tanh-1(R0,RT1/2)],
η=1/[1+A(t/t1)α],
α=T/TR,
A=A0exp(aT)
Ed=kBT ln(νt),
η(Ed)=1/{1+exp[(Ed-ΔE)/kBTR]},
neff(t)=neff(0)/[1+B(t/t1)β],
β=T/Tλ withTλ=5943K,
B=B0exp(bT),B0=5.20×10-6,
b=2.66×10-3 K-1.

Metrics