Abstract

A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Haarpainter, C. Kergomard, J. C. Gascard, P. M. Haugen, “Sea ice dynamics observed by ERS-2 SAR imagery and ARGOS buoys in Storfjorden, Svalbard,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. II, pp. 467–469.
  2. S. Dellepiane, G. Bo, S. Monni, C. Buck, “SAR images and interferometric coherence for flood monitoring,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. VI, pp. 2608–2610.
  3. D. Massonnet, F. Adragna, “Description of the DIAPASON software developed by CNES current and future applications,” Tech. Rep. Space Image Quality and Processing Division, Centre National d’Etudes Spatiales, FRINGE ’96 Workshop, Zurich, Switzerland, 1996.
  4. R. T. Frankot, “Interferometric SAR adaptive filtering method for improved yield and detail,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’98) (Institute of Electrical and Electronics Engineers, New York, 1998), Vol. I, pp. 74–76.
  5. C. Lopez, X. Fabregas, J. Mallorqui, O. Mora, M. Chandra, “Noise filtering of SAR interferometric phase based on wavelet transform,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2928–2930.
  6. J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
    [CrossRef]
  7. J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
    [CrossRef]
  8. E. Trouvé, M. Caramma, H. Maı̂tre, “Fringe detection in noisy complex interferograms,” Appl. Opt. 35, 3799–3806 (1996).
    [CrossRef] [PubMed]
  9. H. Lee, “Interferometric synthetic aperture radar coherence imagery for land surface change detection,” Ph.D. thesis (Imperial College of Science, Technology and Medicine, University of London, London, 2001).
  10. R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon, “Coherence estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens. 37, 135–149 (1999).
    [CrossRef]
  11. S. R. Cloude, K. P. Papathanassiou, “Polarimetric SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 36, 1551–1565 (1998).
    [CrossRef]
  12. R. N. Treuhaft, S. R. Cloude, “The structure of oriented vegetation from polarimetric interferometry,” IEEE Trans. Geosci. Remote Sens. 37, 2620–2624 (1999).
    [CrossRef]
  13. R. Gordon, R. M. Rangayyan, “Feature enhancement of film mammograms using fixed and adaptive neighborhoods,” Appl. Opt. 23, 560–564 (1984).
    [CrossRef] [PubMed]
  14. R. B. Paranjape, T. F. Rabie, R. M. Rangayyan, “Image restoration by adaptive-neighborhood noise substraction,” Appl. Opt. 33, 2861–2869 (1994).
    [CrossRef] [PubMed]
  15. R. M. Rangayyan, M. Ciuc, F. Faghih, “Adaptive-neighborhood filtering of images corrupted by signal-dependent noise,” Appl. Opt. 37, 4477–4487 (1998).
    [CrossRef]
  16. M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
    [CrossRef]
  17. M. Ciuc, Ph. Bolon, E. Trouvé, V. Buzuloiu, J. P. Rudant, “Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images,” Appl. Opt. 40, 5954–5966 (2001).
    [CrossRef]
  18. M. Ciuc, E. Trouvé, Ph. Bolon, V. Buzuloiu, “Amplitude-driven coherence filtering in complex interferograms,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS ’02) (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. VI, pp. 3453–3455.
  19. J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Vis. Graph. Image Process. 21, 255–269 (1983).
    [CrossRef]
  20. M. Nagao, T. Matsuyama, “Edge preserving smoothing,” Comput. Graph. Image Process. 9, 394–407 (1979).
    [CrossRef]
  21. S. R. Cloude, K. P. Papathanassiou, A. Reigber, W. M. Boerner, “Multi-frequency polarimetric SAR interferometry for vegetation structure extraction,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 129–131.
  22. K. Conradsen, A. A. Nielsen, J. Schou, H. Skriver, “Change detection in polarimetric SAR data and the complex Wishart distribution,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2628–2630.
  23. D. Borghys, C. Perneel, M. Acheroy, “Edge and line detection in polarimetric SAR images,” in Proceedings of International Conference on Pattern Recognition (International Association for Pattern Recognition, Surrey, UK, 2002), Vol. II, pp. 921–924.
  24. D. C. Ghiglia, L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
    [CrossRef]

2003 (1)

J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
[CrossRef]

2001 (1)

2000 (1)

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[CrossRef]

1999 (2)

R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon, “Coherence estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens. 37, 135–149 (1999).
[CrossRef]

R. N. Treuhaft, S. R. Cloude, “The structure of oriented vegetation from polarimetric interferometry,” IEEE Trans. Geosci. Remote Sens. 37, 2620–2624 (1999).
[CrossRef]

1998 (2)

R. M. Rangayyan, M. Ciuc, F. Faghih, “Adaptive-neighborhood filtering of images corrupted by signal-dependent noise,” Appl. Opt. 37, 4477–4487 (1998).
[CrossRef]

S. R. Cloude, K. P. Papathanassiou, “Polarimetric SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 36, 1551–1565 (1998).
[CrossRef]

1996 (1)

1994 (2)

1984 (1)

1983 (1)

J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Vis. Graph. Image Process. 21, 255–269 (1983).
[CrossRef]

1981 (1)

J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
[CrossRef]

1979 (1)

M. Nagao, T. Matsuyama, “Edge preserving smoothing,” Comput. Graph. Image Process. 9, 394–407 (1979).
[CrossRef]

Acheroy, M.

D. Borghys, C. Perneel, M. Acheroy, “Edge and line detection in polarimetric SAR images,” in Proceedings of International Conference on Pattern Recognition (International Association for Pattern Recognition, Surrey, UK, 2002), Vol. II, pp. 921–924.

Adragna, F.

D. Massonnet, F. Adragna, “Description of the DIAPASON software developed by CNES current and future applications,” Tech. Rep. Space Image Quality and Processing Division, Centre National d’Etudes Spatiales, FRINGE ’96 Workshop, Zurich, Switzerland, 1996.

Bo, G.

S. Dellepiane, G. Bo, S. Monni, C. Buck, “SAR images and interferometric coherence for flood monitoring,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. VI, pp. 2608–2610.

Boerner, W. M.

S. R. Cloude, K. P. Papathanassiou, A. Reigber, W. M. Boerner, “Multi-frequency polarimetric SAR interferometry for vegetation structure extraction,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 129–131.

Bolon, Ph.

M. Ciuc, Ph. Bolon, E. Trouvé, V. Buzuloiu, J. P. Rudant, “Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images,” Appl. Opt. 40, 5954–5966 (2001).
[CrossRef]

M. Ciuc, E. Trouvé, Ph. Bolon, V. Buzuloiu, “Amplitude-driven coherence filtering in complex interferograms,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS ’02) (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. VI, pp. 3453–3455.

Borghys, D.

D. Borghys, C. Perneel, M. Acheroy, “Edge and line detection in polarimetric SAR images,” in Proceedings of International Conference on Pattern Recognition (International Association for Pattern Recognition, Surrey, UK, 2002), Vol. II, pp. 921–924.

Bruniquel, J.

R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon, “Coherence estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens. 37, 135–149 (1999).
[CrossRef]

Buck, C.

S. Dellepiane, G. Bo, S. Monni, C. Buck, “SAR images and interferometric coherence for flood monitoring,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. VI, pp. 2608–2610.

Buzuloiu, V.

M. Ciuc, Ph. Bolon, E. Trouvé, V. Buzuloiu, J. P. Rudant, “Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images,” Appl. Opt. 40, 5954–5966 (2001).
[CrossRef]

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[CrossRef]

M. Ciuc, E. Trouvé, Ph. Bolon, V. Buzuloiu, “Amplitude-driven coherence filtering in complex interferograms,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS ’02) (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. VI, pp. 3453–3455.

Caramma, M.

Chandra, M.

C. Lopez, X. Fabregas, J. Mallorqui, O. Mora, M. Chandra, “Noise filtering of SAR interferometric phase based on wavelet transform,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2928–2930.

Ciuc, M.

M. Ciuc, Ph. Bolon, E. Trouvé, V. Buzuloiu, J. P. Rudant, “Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images,” Appl. Opt. 40, 5954–5966 (2001).
[CrossRef]

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[CrossRef]

R. M. Rangayyan, M. Ciuc, F. Faghih, “Adaptive-neighborhood filtering of images corrupted by signal-dependent noise,” Appl. Opt. 37, 4477–4487 (1998).
[CrossRef]

M. Ciuc, E. Trouvé, Ph. Bolon, V. Buzuloiu, “Amplitude-driven coherence filtering in complex interferograms,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS ’02) (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. VI, pp. 3453–3455.

Cloude, S. R.

J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
[CrossRef]

R. N. Treuhaft, S. R. Cloude, “The structure of oriented vegetation from polarimetric interferometry,” IEEE Trans. Geosci. Remote Sens. 37, 2620–2624 (1999).
[CrossRef]

S. R. Cloude, K. P. Papathanassiou, “Polarimetric SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 36, 1551–1565 (1998).
[CrossRef]

S. R. Cloude, K. P. Papathanassiou, A. Reigber, W. M. Boerner, “Multi-frequency polarimetric SAR interferometry for vegetation structure extraction,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 129–131.

Conradsen, K.

K. Conradsen, A. A. Nielsen, J. Schou, H. Skriver, “Change detection in polarimetric SAR data and the complex Wishart distribution,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2628–2630.

Dellepiane, S.

S. Dellepiane, G. Bo, S. Monni, C. Buck, “SAR images and interferometric coherence for flood monitoring,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. VI, pp. 2608–2610.

Fabregas, X.

C. Lopez, X. Fabregas, J. Mallorqui, O. Mora, M. Chandra, “Noise filtering of SAR interferometric phase based on wavelet transform,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2928–2930.

Faghih, F.

Frankot, R. T.

R. T. Frankot, “Interferometric SAR adaptive filtering method for improved yield and detail,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’98) (Institute of Electrical and Electronics Engineers, New York, 1998), Vol. I, pp. 74–76.

Gascard, J. C.

J. Haarpainter, C. Kergomard, J. C. Gascard, P. M. Haugen, “Sea ice dynamics observed by ERS-2 SAR imagery and ARGOS buoys in Storfjorden, Svalbard,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. II, pp. 467–469.

Ghiglia, D. C.

Gordon, R.

Grunes, M. R.

J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
[CrossRef]

Haarpainter, J.

J. Haarpainter, C. Kergomard, J. C. Gascard, P. M. Haugen, “Sea ice dynamics observed by ERS-2 SAR imagery and ARGOS buoys in Storfjorden, Svalbard,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. II, pp. 467–469.

Haugen, P. M.

J. Haarpainter, C. Kergomard, J. C. Gascard, P. M. Haugen, “Sea ice dynamics observed by ERS-2 SAR imagery and ARGOS buoys in Storfjorden, Svalbard,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. II, pp. 467–469.

Kergomard, C.

J. Haarpainter, C. Kergomard, J. C. Gascard, P. M. Haugen, “Sea ice dynamics observed by ERS-2 SAR imagery and ARGOS buoys in Storfjorden, Svalbard,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. II, pp. 467–469.

Lee, H.

H. Lee, “Interferometric synthetic aperture radar coherence imagery for land surface change detection,” Ph.D. thesis (Imperial College of Science, Technology and Medicine, University of London, London, 2001).

Lee, J. S.

J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
[CrossRef]

J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Vis. Graph. Image Process. 21, 255–269 (1983).
[CrossRef]

J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
[CrossRef]

Lopes, A.

R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon, “Coherence estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens. 37, 135–149 (1999).
[CrossRef]

Lopez, C.

C. Lopez, X. Fabregas, J. Mallorqui, O. Mora, M. Chandra, “Noise filtering of SAR interferometric phase based on wavelet transform,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2928–2930.

Mai^tre, H.

Mallorqui, J.

C. Lopez, X. Fabregas, J. Mallorqui, O. Mora, M. Chandra, “Noise filtering of SAR interferometric phase based on wavelet transform,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2928–2930.

Massonnet, D.

D. Massonnet, F. Adragna, “Description of the DIAPASON software developed by CNES current and future applications,” Tech. Rep. Space Image Quality and Processing Division, Centre National d’Etudes Spatiales, FRINGE ’96 Workshop, Zurich, Switzerland, 1996.

Matsuyama, T.

M. Nagao, T. Matsuyama, “Edge preserving smoothing,” Comput. Graph. Image Process. 9, 394–407 (1979).
[CrossRef]

Monni, S.

S. Dellepiane, G. Bo, S. Monni, C. Buck, “SAR images and interferometric coherence for flood monitoring,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. VI, pp. 2608–2610.

Mora, O.

C. Lopez, X. Fabregas, J. Mallorqui, O. Mora, M. Chandra, “Noise filtering of SAR interferometric phase based on wavelet transform,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2928–2930.

Nagao, M.

M. Nagao, T. Matsuyama, “Edge preserving smoothing,” Comput. Graph. Image Process. 9, 394–407 (1979).
[CrossRef]

Nielsen, A. A.

K. Conradsen, A. A. Nielsen, J. Schou, H. Skriver, “Change detection in polarimetric SAR data and the complex Wishart distribution,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2628–2630.

Papathanassiou, K.

J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
[CrossRef]

Papathanassiou, K. P.

S. R. Cloude, K. P. Papathanassiou, “Polarimetric SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 36, 1551–1565 (1998).
[CrossRef]

S. R. Cloude, K. P. Papathanassiou, A. Reigber, W. M. Boerner, “Multi-frequency polarimetric SAR interferometry for vegetation structure extraction,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 129–131.

Paranjape, R. B.

Perneel, C.

D. Borghys, C. Perneel, M. Acheroy, “Edge and line detection in polarimetric SAR images,” in Proceedings of International Conference on Pattern Recognition (International Association for Pattern Recognition, Surrey, UK, 2002), Vol. II, pp. 921–924.

Rabie, T. F.

Rangayyan, R. M.

Reigber, A.

S. R. Cloude, K. P. Papathanassiou, A. Reigber, W. M. Boerner, “Multi-frequency polarimetric SAR interferometry for vegetation structure extraction,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 129–131.

Romero, L. A.

Rudant, J. P.

Schou, J.

K. Conradsen, A. A. Nielsen, J. Schou, H. Skriver, “Change detection in polarimetric SAR data and the complex Wishart distribution,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2628–2630.

Skriver, H.

K. Conradsen, A. A. Nielsen, J. Schou, H. Skriver, “Change detection in polarimetric SAR data and the complex Wishart distribution,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2628–2630.

Touzi, R.

R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon, “Coherence estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens. 37, 135–149 (1999).
[CrossRef]

Treuhaft, R. N.

R. N. Treuhaft, S. R. Cloude, “The structure of oriented vegetation from polarimetric interferometry,” IEEE Trans. Geosci. Remote Sens. 37, 2620–2624 (1999).
[CrossRef]

Trouvé, E.

M. Ciuc, Ph. Bolon, E. Trouvé, V. Buzuloiu, J. P. Rudant, “Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images,” Appl. Opt. 40, 5954–5966 (2001).
[CrossRef]

E. Trouvé, M. Caramma, H. Maı̂tre, “Fringe detection in noisy complex interferograms,” Appl. Opt. 35, 3799–3806 (1996).
[CrossRef] [PubMed]

M. Ciuc, E. Trouvé, Ph. Bolon, V. Buzuloiu, “Amplitude-driven coherence filtering in complex interferograms,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS ’02) (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. VI, pp. 3453–3455.

Vachon, P. W.

R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon, “Coherence estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens. 37, 135–149 (1999).
[CrossRef]

Woodhouse, I. H.

J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
[CrossRef]

Zaharia, T.

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[CrossRef]

Appl. Opt. (5)

Comput. Graph. Image Process. (2)

J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
[CrossRef]

M. Nagao, T. Matsuyama, “Edge preserving smoothing,” Comput. Graph. Image Process. 9, 394–407 (1979).
[CrossRef]

Comput. Vis. Graph. Image Process. (1)

J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Vis. Graph. Image Process. 21, 255–269 (1983).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (4)

J. S. Lee, S. R. Cloude, K. Papathanassiou, M. R. Grunes, I. H. Woodhouse, “Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003).
[CrossRef]

R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon, “Coherence estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens. 37, 135–149 (1999).
[CrossRef]

S. R. Cloude, K. P. Papathanassiou, “Polarimetric SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 36, 1551–1565 (1998).
[CrossRef]

R. N. Treuhaft, S. R. Cloude, “The structure of oriented vegetation from polarimetric interferometry,” IEEE Trans. Geosci. Remote Sens. 37, 2620–2624 (1999).
[CrossRef]

J. Electron. Imaging (1)

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Other (10)

M. Ciuc, E. Trouvé, Ph. Bolon, V. Buzuloiu, “Amplitude-driven coherence filtering in complex interferograms,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS ’02) (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. VI, pp. 3453–3455.

J. Haarpainter, C. Kergomard, J. C. Gascard, P. M. Haugen, “Sea ice dynamics observed by ERS-2 SAR imagery and ARGOS buoys in Storfjorden, Svalbard,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. II, pp. 467–469.

S. Dellepiane, G. Bo, S. Monni, C. Buck, “SAR images and interferometric coherence for flood monitoring,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. VI, pp. 2608–2610.

D. Massonnet, F. Adragna, “Description of the DIAPASON software developed by CNES current and future applications,” Tech. Rep. Space Image Quality and Processing Division, Centre National d’Etudes Spatiales, FRINGE ’96 Workshop, Zurich, Switzerland, 1996.

R. T. Frankot, “Interferometric SAR adaptive filtering method for improved yield and detail,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’98) (Institute of Electrical and Electronics Engineers, New York, 1998), Vol. I, pp. 74–76.

C. Lopez, X. Fabregas, J. Mallorqui, O. Mora, M. Chandra, “Noise filtering of SAR interferometric phase based on wavelet transform,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2928–2930.

H. Lee, “Interferometric synthetic aperture radar coherence imagery for land surface change detection,” Ph.D. thesis (Imperial College of Science, Technology and Medicine, University of London, London, 2001).

S. R. Cloude, K. P. Papathanassiou, A. Reigber, W. M. Boerner, “Multi-frequency polarimetric SAR interferometry for vegetation structure extraction,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’00) (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 129–131.

K. Conradsen, A. A. Nielsen, J. Schou, H. Skriver, “Change detection in polarimetric SAR data and the complex Wishart distribution,” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS ’01) (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. VI, pp. 2628–2630.

D. Borghys, C. Perneel, M. Acheroy, “Edge and line detection in polarimetric SAR images,” in Proceedings of International Conference on Pattern Recognition (International Association for Pattern Recognition, Surrey, UK, 2002), Vol. II, pp. 921–924.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spaceborne InSAR data over the Cameroon River estuary region after five-look averaging (410×410 pixel subimages): (a) master amplitude image, (b) slave amplitude image, (c) initial coherence map.

Fig. 2
Fig. 2

Histograms of the coherence images over the Cameroon River estuary region from Fig. 3.

Fig. 3
Fig. 3

Results of coherence filtering on InSAR Cameroon River estuary region: (a) coherence after the 5×5 FMF, (b) coherence after the LAF, (c) coherence after the ANF, (d) map of the AN region size. Small sizes are mapped to dark tones, and large sizes are mapped to light tones.

Fig. 4
Fig. 4

One of the airborne Pol-InSAR two-look amplitude images of the DLR Oberpfaffenhofen area (1400×1400 pixels).

Fig. 5
Fig. 5

Results of filtering Pol-InSAR data over the DLR headquarters: (a) initial two-look coherence map for the HH polarization configuration, (b) coherence filtered by the FMF, (c) coherence filtered by the LAF, (d) coherence filtered by the 6-ADANF.

Fig. 6
Fig. 6

Zoom on Pol-InSAR-filtered data over the DLR headquarters (500×260 pixel subimages): (a) after the FMF, (b) after the LAF, (c) after the 6-ADANF.

Fig. 7
Fig. 7

Pol-InSAR data over the DLR headquarters: (a) Sobel gradient module of the 6-ADANF coherence image, (b) mask used in the ROC analysis.

Fig. 8
Fig. 8

Assessment of the edge-detection performance in the Pol-InSAR-filtered coherence images: detection histograms (corresponding to the contour regions), false-alarm histograms (corresponding to the homogeneous regions), and the resulting ROC (detection probability versus false-alarm probability).

Tables (4)

Tables Icon

Table 1 Coherence Mean over Homogeneous Areas on the Cameroon River Estuary Region

Tables Icon

Table 2 Coherence Standard Deviation over Homogeneous Areas on the Cameroon River Estuary Region

Tables Icon

Table 3 Coherence Mean over Homogeneous Regions for the Oberpfaffenhofen Area from the DLR

Tables Icon

Table 4 Coherence Standard Deviation over Homogeneous Regions for the Oberpfaffenhofen Area from the DLR

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

C˜pol=C¯pol+b(Cpol-C¯pol).
C=E{u1u2*}(E{|u1|2}E{|u2|2})1/2.
c=i=1Lu1u2*i=1L|u1|2i=1L|u2|21/2,
ϕ=argi=1Lu1u2*,
si=SHHi2SXXiSVVi.
Cpol=s1s2(s1*Ts2*T)=V11K12K12*TV22,
Cxx/yy=|E{SxxSyy*}|(E{|Sxx|2}E{|Syy|2})1/2,
cxx/yy=i=1LSxxSyy*i=1L|Sxx|2i=1L|Syy|21/2,
ϕxx/yy=argi=1LSxxSyy*.
a(m, n)=[A1(m, n),A2(m, n)]T.
a(m, n)-aˆ(m, n)aˆ(m, n)T1,T1=σn/μn.
a(o, p)-a¯(m, n)a¯(m, n)T2,T2=2T1.
W=Wj,
j=arg mini=18k=12σik2(m, n)μik2(m, n).
p(m, n)=pHH(m, n)pVV(m, n)pXX(m, n)T=A1HH(m, n)A2HH(m, n)A1VV(m, n)A2VV(m, n)A1XX(m, n)A2XX(m, n)T.
pHH(k, l)-pHH^(m, n)pHH^(m, n)+pVV(k, l)-pVV^(m, n)pVV^(m, n)
+pXX(k, l)-pXX^(m, n)pXX^(m, n)T1,
T1=3(σn/μn).
pHH(o, p)-pHH¯(m, n)pHH¯(m, n)+pVV(o, p)-pVV¯(m, n)pVV¯(m, n)
+pXX(o, p)-pXX¯(m, n)pXX(m, n)T2,
T2=2T1.
ψ(k, l)=ϕ(k, l)-2π[(k-m)f^x+(l-n)f^y]
(mod2π).
c˜(m, n)exp[Jϕ˜(m, n)]
=(k,l)WA2(k, l)c(k, l)exp[Jψ(k, l)](k,l)WA2(k, l),
c˜(m, n)exp[Jϕ˜(m, n)]
=(k,l)W(m, n)A1(k, l)A2(k, l)c(k, l)exp[Jψ(k, l)](k,l)W(m, n)A12(k, l)(k, l)W(m, n)A22(k, l)1/2.
Pd=ΘVmaxfδ(x)dx,
Pfa=ΘVmaxfϕ(y)dy,

Metrics