Abstract

We characterize the scintillation index of a multiwavelength plane-wave optical beam that is subjected to a turbulent optical channel. It is assumed that the level of turbulence in the atmosphere ensures a weak-turbulence scenario and that the turbulence is due to the fluctuations in the index of refraction of the medium. It is assumed that the propagation path is nearly horizontal and that the heights of the transmitter and receiver justify a near-ground propagation assumption.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kiasaleh, “Performance analysis of free-space on–off-keying optical communication systems impaired by turbulence,” in Free-Space Laser Communication Technologies XIV, S. Mecherle, ed., Proc. SPIE4635, 150–161 (2002).
    [CrossRef]
  2. R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
    [CrossRef]
  3. R. L. Fante, “Wave propagation in random media: a systems approach,” in Progress in Optics, Vol. XXII, E. Wolf, ed. (Elsevier, New York, 1985).
  4. L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, Bellingham, Wash., 1998).
  5. H. T. Yura, C. C. Sung, S. F. Clifford, R. J. Hill, “Second-order Rytov approximation,” J. Opt. Soc. Am. 73, 500–502 (1983).
    [CrossRef]
  6. H. T. Yura, S. G. Hanson, “Second-order statistics for wave propagation through complex optical systems,” J. Opt. Soc. Am. A 6, 564–575 (1989).
    [CrossRef]
  7. R. L. Fante, “Two-position, two-frequency mutual-coherence function in turbulence,” J. Opt. Soc. Am. A 71, 1446–1461 (1981).
    [CrossRef]

1989 (1)

1983 (1)

1981 (1)

R. L. Fante, “Two-position, two-frequency mutual-coherence function in turbulence,” J. Opt. Soc. Am. A 71, 1446–1461 (1981).
[CrossRef]

1975 (1)

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
[CrossRef]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, Bellingham, Wash., 1998).

Clifford, S. F.

Fante, R. L.

R. L. Fante, “Two-position, two-frequency mutual-coherence function in turbulence,” J. Opt. Soc. Am. A 71, 1446–1461 (1981).
[CrossRef]

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
[CrossRef]

R. L. Fante, “Wave propagation in random media: a systems approach,” in Progress in Optics, Vol. XXII, E. Wolf, ed. (Elsevier, New York, 1985).

Hanson, S. G.

Hill, R. J.

Kiasaleh, K.

K. Kiasaleh, “Performance analysis of free-space on–off-keying optical communication systems impaired by turbulence,” in Free-Space Laser Communication Technologies XIV, S. Mecherle, ed., Proc. SPIE4635, 150–161 (2002).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, Bellingham, Wash., 1998).

Sung, C. C.

Yura, H. T.

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

R. L. Fante, “Two-position, two-frequency mutual-coherence function in turbulence,” J. Opt. Soc. Am. A 71, 1446–1461 (1981).
[CrossRef]

H. T. Yura, S. G. Hanson, “Second-order statistics for wave propagation through complex optical systems,” J. Opt. Soc. Am. A 6, 564–575 (1989).
[CrossRef]

Proc. IEEE (1)

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
[CrossRef]

Other (3)

R. L. Fante, “Wave propagation in random media: a systems approach,” in Progress in Optics, Vol. XXII, E. Wolf, ed. (Elsevier, New York, 1985).

L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, Bellingham, Wash., 1998).

K. Kiasaleh, “Performance analysis of free-space on–off-keying optical communication systems impaired by turbulence,” in Free-Space Laser Communication Technologies XIV, S. Mecherle, ed., Proc. SPIE4635, 150–161 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E{R_, t}=l=-NNEl{R_}expj 2πcλl t+ϕl(t),
2El(R_)+kl2n2(R_)El(R_)=0;
l[-N, -N+1,, N-1, N],
E(r){R_, t}=l=-NNEl(r){R_}exp[Ψl(R_)]×expj 2πcλl t+ϕl(t),
I{R_}=|E(r){R_, t}|2t=l=-NN|El(r){R_}|2exp[Ψl(R_)+Ψl*(R_)],
I{R_}=l=-NNAl(R_)exp[Ψl(R_)+Ψl*(R_)]=l=-NNAl(R_)exp[2ζl(R_)],
σsc2=l1=-NNl2=-NNAl1(R_)Al2(R_)×exp[2ζl1(R_)+2ζl2(R_)]¯ /I{R_}¯2-1.
Rll(R_, R_)=σl2=ζl2(R_)¯=12Re[Ψl(R_)Ψl*(R_)¯]+12Re[Ψl(R_)Ψl(R_)¯],
Rl1l2(R_, R_)=ζl1(R_)ζl2(R_)¯=12Re[Ψl1(R_)Ψl2*(R_)¯]+12Re[Ψli(R_)Ψl2(R_)¯];l1l2.
Γl=exp[2ζl(R_)]¯=exp{2[γl+Rll(R_, R_)]},
Γl1l2=exp[2ζl1(R_)+2ζl2(R_)]¯=Γl1Γl2exp[4Rl1l2(R_, R_)].
σl2=2π2kl20L0dκΦn(κ, η)×1-cosκ2kl (L-η)dκdη.
Ψl(R_)=jkl0L--dη(k_, z)×expjk_R_-iκ2kl (L-z)dz.
Ψl1(R_)Ψl2*(R_)¯4π2k1k20L0κdκdηΦn(κ, η)×exp-jκ2(L-η)2 (1/k1-1/k2),
Ψl1(R_)Ψl2*(R_)¯
-4π2k1k20L0κdκdηΦn(κ, η)×expjκ2[(z1+z2)/2-L]2 (1/k1+1/k2).
Rl1l2(R_, R_)=2π2k1k20L0κdκdηΦn(κ, η)×cosκ2(L-η)2kd1,2-cosκ2(L-η)2ks1,2.
Rl1l2(R_, R_)=2π2k1k2LCn20κdκΦn(n)(κ)×sin cκ2L2kd1,2-sin cκ2L2ks1,2,
σsc22l1=-NNl2=l1+1NAl1(R_)Al2(R_)exp[4Rl1l2(R_, R_)]+l2=-NNAl2(R_)exp(4σl2)/l=-NNAl(R_)2-1.

Metrics