Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach

Not Accessible

Your library or personal account may give you access

Abstract

We study the deviation from diffusion theory that occurs in the dynamic transport of light through thin scattering slabs. Solving numerically the time-dependent radiative transfer equation, we obtain the decay time and the effective diffusion coefficient Deff. We observe a nondiffusive behavior for systems whose thickness L is smaller than 8ltr, where ltr is the transport mean free path. We introduce a simple model that yields the position of the transition between the diffusive and the nondiffusive regimes. The size dependence of Deff in the nondiffusive region is strongly affected by internal reflections. We show that the reduction of ∼50% of Deff that was observed experimentally [Phys. Rev. Lett. 79, 4369 (1997)] can be reproduced by the radiative transfer approach. We demonstrate that the radiative transfer equation is an appropriate tool for studying dynamic light transport in thin scattering systems when coherent effects play no significant role.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Photon diffusion coefficient in scattering and absorbing media

Romain Pierrat, Jean-Jacques Greffet, and Rémi Carminati
J. Opt. Soc. Am. A 23(5) 1106-1110 (2006)

Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation

Laurent Roux, Philippe Mareschal, Nicolas Vukadinovic, Jean-Baptiste Thibaud, and Jean-Jacques Greffet
J. Opt. Soc. Am. A 18(2) 374-384 (2001)

Spatial coherence in strongly scattering media

Romain Pierrat, Jean-Jacques Greffet, Rémi Carminati, and Rachid Elaloufi
J. Opt. Soc. Am. A 22(11) 2329-2337 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved