Abstract

We quantitatively demonstrate the improvement to adaptively corrected retinal images by using deconvolution to remove the residual wave-front aberrations. Qualitatively, deconvolution improves the contrast of the adaptive optics images. In this work we demonstrate that quantitative information is also increased by investigation of the improvement to cone classification due to the reduction in confusion of adjacent cones because of the extended wings of the point-spread function. The results show that the error in classification between the L and M cones is reduced by a factor of 2, thereby reducing the number of images required by a factor of 4.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  2. I. Iglesias, P. Artal, “High-resolution images obtained by deconvolution from wavefront sensing,” Opt. Lett. 25, 1804–1806 (2000).
    [CrossRef]
  3. D. Catlin, C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002).
    [CrossRef]
  4. J. Arines, S. Bara, “Hybrid technique for high resolution imaging of the eye fundus,” ACI Mater. J.11, 761–766 (2003); www.opticsexpress.org .
  5. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef] [PubMed]
  6. A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001).
    [CrossRef] [PubMed]
  7. H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” ACI Mater. J.8, 631–643 (2001); www.opticsexpress.org .
  8. T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).
  9. F. W. Campbell, W. A. H. Rushton, “Measurement of the scotopic pigment in the living human eye,” J. Physiol. (London) 130, 131–147 (1955).
  10. W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
    [CrossRef] [PubMed]
  11. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca Fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  12. G. Wyszecki, W. S. Stiles, “Theories and models of color vision,” in Color Science: Concepts and Methods, Quantitative Data and Formulae2nd ed. (Wiley, New York, 1982).
  13. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
    [CrossRef]
  14. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
    [CrossRef]
  15. S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
    [CrossRef]
  16. J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).
  17. R. J. Hanisch, R. L. White, ed., The Restoration of HST Images & Spectra II NASA/Goddard Space Telescope Science Institute (NASA/Space Telescope Science Institute, Baltimore, Md., 1994).
  18. D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000).
    [CrossRef]
  19. J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).
  20. A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
    [CrossRef]
  21. L. Mugnier, C. Robert, J.-M. Conan, V. Michau, S. Salem, “Myopic deconvolution from wave-front sensing,” J. Opt. Soc. Am. A 18, 862–872 (2001).
    [CrossRef]

2003

J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

2002

2001

L. Mugnier, C. Robert, J.-M. Conan, V. Michau, S. Salem, “Myopic deconvolution from wave-front sensing,” J. Opt. Soc. Am. A 18, 862–872 (2001).
[CrossRef]

A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001).
[CrossRef] [PubMed]

2000

D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000).
[CrossRef]

I. Iglesias, P. Artal, “High-resolution images obtained by deconvolution from wavefront sensing,” Opt. Lett. 25, 1804–1806 (2000).
[CrossRef]

1999

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

1997

1996

T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).

1993

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

1987

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca Fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

1974

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[CrossRef]

1972

1964

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

1955

F. W. Campbell, W. A. H. Rushton, “Measurement of the scotopic pigment in the living human eye,” J. Physiol. (London) 130, 131–147 (1955).

Ageorges, N.

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Artal, P.

Baker, H. D.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Barnaby, D.

D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000).
[CrossRef]

Bartsch, D. G.

T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).

Baylor, D. A.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca Fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Bonaccini, D.

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Campbell, F. W.

F. W. Campbell, W. A. H. Rushton, “Measurement of the scotopic pigment in the living human eye,” J. Physiol. (London) 130, 131–147 (1955).

Catlin, D.

Christou, J. C.

J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).

D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000).
[CrossRef]

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

Conan, J.-M.

Dainty, C.

Drummond, J. D.

J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).

D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000).
[CrossRef]

Freeman, W. R.

T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).

Hofer, H.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

Holmes, T. J.

T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).

Iglesias, I.

Jefferies, S. M.

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

Koehler, R.

J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).

Lennie, P.

A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001).
[CrossRef] [PubMed]

Liang, J.

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[CrossRef]

Marchis, F.

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Metha, A. B.

A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001).
[CrossRef] [PubMed]

Michau, V.

Miller, D.

Mugnier, L.

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca Fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

O’Conner, N. J.

T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).

Pallikaris, A.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

Pugliese, G.

J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).

Ramirrez, R. J.

T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).

Richardson, W. H.

Robert, C.

Roorda, A.

A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Rushton, W. A. H.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

F. W. Campbell, W. A. H. Rushton, “Measurement of the scotopic pigment in the living human eye,” J. Physiol. (London) 130, 131–147 (1955).

Salem, S.

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca Fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Spillar, E.

D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, “Theories and models of color vision,” in Color Science: Concepts and Methods, Quantitative Data and Formulae2nd ed. (Wiley, New York, 1982).

Williams, D. R.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, “Theories and models of color vision,” in Color Science: Concepts and Methods, Quantitative Data and Formulae2nd ed. (Wiley, New York, 1982).

Astron. J.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[CrossRef]

D. Barnaby, E. Spillar, J. C. Christou, J. D. Drummond, “Measurements of binary stars with the Starfire Optical Range Adaptive Optics Systems,” Astron. J. 119, 378–389 (2000).
[CrossRef]

Astrophys. J.

S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
[CrossRef]

Bull. Am. Astron. Soc.

J. C. Christou, G. Pugliese, R. Koehler, J. D. Drummond, “Photometric and astrometric analysis of Gemini Galactic Center observations using ‘StarFinder’ and blind deconvolution packages,” Bull. Am. Astron. Soc. 34, 1202 (2003).

ESO Messenger

J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).

Invest. Ophthalmol. Visual Sci.

A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003).
[CrossRef]

Invest. Ophthalmol. Visual Sci. Suppl.

T. J. Holmes, R. J. Ramirrez, D. G. Bartsch, N. J. O’Conner, W. R. Freeman, “Deconvolution and automatic alignment of indocyanine green fundus tomograms: initial study of feasibility,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S608 (1996).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol. (London)

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca Fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

F. W. Campbell, W. A. H. Rushton, “Measurement of the scotopic pigment in the living human eye,” J. Physiol. (London) 130, 131–147 (1955).

Nature

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Opt. Lett.

Vision Res.

A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001).
[CrossRef] [PubMed]

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Other

H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” ACI Mater. J.8, 631–643 (2001); www.opticsexpress.org .

R. J. Hanisch, R. L. White, ed., The Restoration of HST Images & Spectra II NASA/Goddard Space Telescope Science Institute (NASA/Space Telescope Science Institute, Baltimore, Md., 1994).

G. Wyszecki, W. S. Stiles, “Theories and models of color vision,” in Color Science: Concepts and Methods, Quantitative Data and Formulae2nd ed. (Wiley, New York, 1982).

J. Arines, S. Bara, “Hybrid technique for high resolution imaging of the eye fundus,” ACI Mater. J.11, 761–766 (2003); www.opticsexpress.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simulation showing the effects of noise and blur on the absorptance plots for cones near the fovea. The S, M, and L cones are represented by the symbols ○, ▲, and ●, respectively. Top left, no noise and no blur. The lines are curved owing to self-screening of the photopigments:12 top right, random noise (3% variance in pixel intensity); bottom left, PSF with 1-arc-min FWHM Gaussian blur; bottom right; noise and blur combined.

Fig. 2
Fig. 2

Left and center columns: Two sample observations (from the set of ten) of the synthetic retinal data set for the three different bleach cases: 470 nm (top), 650 nm (center), and full (bottom). The different reflectances can be seen between the three bleach states as well as the different AO compensation (left and right) between the individual bleach frame pairs. Right column: The corresponding MFBD results. Note that the individual cones are now well isolated with reduction of the overlapping PSFs.

Fig. 3
Fig. 3

Original PSFs (top row) compared with the estimate of the PSF from the deconvolution. The rows are deconvolved PSFs from the full, 650, and 470 bleached images, respectively.

Fig. 4
Fig. 4

Cone classification from absorptance measurements for the synthetic images (top) compared with those for the deconvolved images (bottom). These plots illustrate the effectiveness of deconvolution for making quantitative measurements. There is no doubt as to the three different cone classes in the deconvolved case as opposed to the overlapping distributions in the other plot. The solid lines are linear fits to the L and M cones’ absorptance distributions.

Fig. 5
Fig. 5

AO images of a living retina for the three bleach cases: 470 nm, 650 nm, and full bleach (left to right). The individual cones are shown, as are the shadows of blood vessels. Each image is the average of 36 individual measurements.

Fig. 6
Fig. 6

Deconvolution of the 36 frames making up the averages shown in Figure 5. The contrast is clearly enhanced, signifying reduction of the strength of the PSF wings and with individual cones more clearly identified. Left to right: 470 nm, 650 nm, and full bleach.

Fig. 7
Fig. 7

Radial profiles of a high-reflectance cone before and after deconvolution for the full-bleach image. The contrast of the cone has increased by a factor of ∼5–6, and the FWHM has decreased by a factor of ∼2.8.

Fig. 8
Fig. 8

L and M cones used for the radiometric analysis superimposed over the full-bleach deconvolved image. The circles have a radius of 3 pixels.

Fig. 9
Fig. 9

Cone classification for L and M cones from the absorptance measurements for the averaged retinal images in Fig. 6 (bottom) compared with the corresponding deconvolved images in Fig. 7 (top). The differences due to the aperture size used for the measurements are shown for (from left to right) circular radii of 1.5, 2, 3, 4, and 5 pixels.

Fig. 10
Fig. 10

Histograms and best fits of a double Gaussian to the distributions shown in Fig. 9 for circular aperture radii of (left to right) 1.5, 2, 3, 4, and 5 pixels with (bottom) and without (top) deconvolution.

Fig. 11
Fig. 11

Plot of percentage assignment error versus cone aperture radius in pixels. The smallest cone assignment error for the deconvolved images is 2.16%, which represents a nearly twofold improvement over the analysis of the raw images.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A470=1-R470Rfull,A650=1-R650Rfull.
θ=tan-1A650A470.
g(x, y)=f(x, y) * h(x, y),

Metrics