Abstract

We report on the numerical analysis of the local electric field enhancement of nanosized silver ellipsoids placed in the evanescent field near a glass surface. Across the visible spectrum the enhancement factor for silver particles varies by more than one order of magnitude because of surface-plasmon resonance. Because of the spatially inhomogeneous excitation, higher-order modes additionally contribute and modify the spectral dependence of the electric field compared with plane-wave excitation. Moving the metal particle toward the glass surface increases the field enhancement and shifts the plasmon resonance, which in addition splits between both ends of the particle. Besides the near-field properties of such a probe we also discuss to what extent these local properties can be measured in the far field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zenhausern, M. O’Boyle, H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [CrossRef]
  2. Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [CrossRef] [PubMed]
  3. R. Bachelot, P. Gleyzes, A. C. Boccara, “Near field optical microscopy by local pertubation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1994).
    [CrossRef]
  4. M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
    [CrossRef] [PubMed]
  5. T. Kalkbrenner, “Charakterisierung und Manipulation der Plasmon-Resonanz eines einzelnen Gold-Nanopartikels,” Ph.D. thesis (Universität Konstanz, Konstanz, Germany, 2002).
  6. B. Knoll, F. Keilmann, “Scanning microscopy by mid-infrared near-field scattering,” Appl. Phys. A 66, 477–481 (1998).
    [CrossRef]
  7. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2, 1538–1541 (1985).
    [CrossRef]
  8. R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
    [CrossRef]
  9. M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
    [CrossRef]
  10. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
    [CrossRef]
  11. A. Hartschuh, N. Anderson, L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
    [CrossRef] [PubMed]
  12. A. Otto, I. Mrozek, W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992).
    [CrossRef]
  13. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  14. A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003).
    [CrossRef]
  15. T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000).
    [CrossRef]
  16. O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002).
    [CrossRef]
  17. Y. Martin, H. Hamann, H. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
    [CrossRef]
  18. J. Gersten, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surface,” J. Chem. Phys. 73, 3023–3037 (1980).
    [CrossRef]
  19. P. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983).
    [CrossRef]
  20. A. Wokaun, “Surface enhancement of optical fields—mechanism and application,” Mol. Phys. 56, 1–33 (1985).
    [CrossRef]
  21. L. Novotny, R. Bian, X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  22. A. Zayats, “Electromagnetic field enhancement in the context of apertureless near-field microscopy,” Opt. Commun. 161, 156–162 (1999).
    [CrossRef]
  23. R. Hillenbrandt, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2000).
    [CrossRef]
  24. N. Calander, M. Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,” J. Appl. Phys. 92, 4878–4884 (2002).
    [CrossRef]
  25. J. Krug, E. Sánchez, X. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10 895–10 901 (2002).
    [CrossRef]
  26. J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003).
    [CrossRef]
  27. H. Chew, D. Wang, M. Kerker, “Elastic scattering of evanescent electromagnetic waves,” Appl. Opt. 18, 2679–2687 (1979).
    [CrossRef] [PubMed]
  28. C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
    [CrossRef]
  29. C. Girard, A. Dereux, J.-C. Weeber, “Near-field optical contrasts in the Fresnel evanescent wave,” Phys. Rev. E 58, 1081–1085 (1998).
    [CrossRef]
  30. R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering of evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
    [CrossRef]
  31. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).
  32. C. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).
  33. C. Hafner, Post-Modern Electromagnetics: Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).
  34. D. Lynch, W. Hunter, “Introduction to the Data for Several Metals,” in E. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1985), p. 350.
  35. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  36. A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000).
    [CrossRef] [PubMed]
  37. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  38. L. Novotny, D. W. Pohl, P. Regli, “Near-field, far-field imaging properties of the 2D aperture SNOM,” Ultramicroscopy 57, 180–188 (1995).
    [CrossRef]
  39. B. Hecht, “Forbidden light scanning near-field optical microscopy,” Ph.D. thesis (Universität Basel, Basel, Switzerland, 1996).
  40. B. Hecht, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both worlds?” Ultramicroscopy 57, 228–334 (1995).
    [CrossRef]

2003 (3)

A. Hartschuh, N. Anderson, L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003).
[CrossRef]

J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003).
[CrossRef]

2002 (3)

N. Calander, M. Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,” J. Appl. Phys. 92, 4878–4884 (2002).
[CrossRef]

J. Krug, E. Sánchez, X. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10 895–10 901 (2002).
[CrossRef]

O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002).
[CrossRef]

2001 (1)

Y. Martin, H. Hamann, H. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

2000 (6)

T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000).
[CrossRef]

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

R. Hillenbrandt, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2000).
[CrossRef]

A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000).
[CrossRef] [PubMed]

1999 (2)

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering of evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

A. Zayats, “Electromagnetic field enhancement in the context of apertureless near-field microscopy,” Opt. Commun. 161, 156–162 (1999).
[CrossRef]

1998 (2)

C. Girard, A. Dereux, J.-C. Weeber, “Near-field optical contrasts in the Fresnel evanescent wave,” Phys. Rev. E 58, 1081–1085 (1998).
[CrossRef]

B. Knoll, F. Keilmann, “Scanning microscopy by mid-infrared near-field scattering,” Appl. Phys. A 66, 477–481 (1998).
[CrossRef]

1997 (1)

L. Novotny, R. Bian, X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

1995 (3)

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Near-field, far-field imaging properties of the 2D aperture SNOM,” Ultramicroscopy 57, 180–188 (1995).
[CrossRef]

B. Hecht, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both worlds?” Ultramicroscopy 57, 228–334 (1995).
[CrossRef]

1994 (3)

F. Zenhausern, M. O’Boyle, H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near field optical microscopy by local pertubation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1994).
[CrossRef]

1992 (2)

M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

A. Otto, I. Mrozek, W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992).
[CrossRef]

1985 (3)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

A. Wokaun, “Surface enhancement of optical fields—mechanism and application,” Mol. Phys. 56, 1–33 (1985).
[CrossRef]

J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2, 1538–1541 (1985).
[CrossRef]

1983 (1)

P. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983).
[CrossRef]

1980 (1)

J. Gersten, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surface,” J. Chem. Phys. 73, 3023–3037 (1980).
[CrossRef]

1979 (1)

Akemann, W.

A. Otto, I. Mrozek, W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992).
[CrossRef]

Anderson, M. S.

M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
[CrossRef]

Anderson, N.

A. Hartschuh, N. Anderson, L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

Apell, S. P.

J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003).
[CrossRef]

Aravind, P.

P. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983).
[CrossRef]

Bachelot, R.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near field optical microscopy by local pertubation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1994).
[CrossRef]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003).
[CrossRef]

Bian, R.

L. Novotny, R. Bian, X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Boccara, A. C.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near field optical microscopy by local pertubation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1994).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bomholt, L.

C. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003).
[CrossRef]

Calander, N.

N. Calander, M. Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,” J. Appl. Phys. 92, 4878–4884 (2002).
[CrossRef]

Carminati, R.

A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000).
[CrossRef] [PubMed]

Chew, H.

Deckert, V.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Dereux, A.

C. Girard, A. Dereux, J.-C. Weeber, “Near-field optical contrasts in the Fresnel evanescent wave,” Phys. Rev. E 58, 1081–1085 (1998).
[CrossRef]

Gersten, J.

J. Gersten, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surface,” J. Chem. Phys. 73, 3023–3037 (1980).
[CrossRef]

Girard, C.

C. Girard, A. Dereux, J.-C. Weeber, “Near-field optical contrasts in the Fresnel evanescent wave,” Phys. Rev. E 58, 1081–1085 (1998).
[CrossRef]

Gleyzes, P.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near field optical microscopy by local pertubation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1994).
[CrossRef]

Greffet, J.-J.

A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000).
[CrossRef] [PubMed]

Hafner, C.

C. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).

C. Hafner, Post-Modern Electromagnetics: Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).

Hamann, H.

Y. Martin, H. Hamann, H. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

Hänsch, T.

M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003).
[CrossRef]

A. Hartschuh, N. Anderson, L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

Hayazawa, N.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Hecht, B.

B. Hecht, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both worlds?” Ultramicroscopy 57, 228–334 (1995).
[CrossRef]

B. Hecht, “Forbidden light scanning near-field optical microscopy,” Ph.D. thesis (Universität Basel, Basel, Switzerland, 1996).

Heckl, W.

M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Heinzelmann, H.

B. Hecht, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both worlds?” Ultramicroscopy 57, 228–334 (1995).
[CrossRef]

Hillenbrandt, R.

R. Hillenbrandt, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2000).
[CrossRef]

Hoffmann, P.

O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hunter, W.

D. Lynch, W. Hunter, “Introduction to the Data for Several Metals,” in E. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1985), p. 350.

Inouye, Y.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

Johansson, P.

J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003).
[CrossRef]

Joulain, K.

A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000).
[CrossRef] [PubMed]

Kaiser, T.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000).
[CrossRef]

T. Kalkbrenner, “Charakterisierung und Manipulation der Plasmon-Resonanz eines einzelnen Gold-Nanopartikels,” Ph.D. thesis (Universität Konstanz, Konstanz, Germany, 2002).

Kawata, S.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

Keilmann, F.

R. Hillenbrandt, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2000).
[CrossRef]

B. Knoll, F. Keilmann, “Scanning microscopy by mid-infrared near-field scattering,” Appl. Phys. A 66, 477–481 (1998).
[CrossRef]

Kerker, M.

Knoll, B.

R. Hillenbrandt, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2000).
[CrossRef]

B. Knoll, F. Keilmann, “Scanning microscopy by mid-infrared near-field scattering,” Appl. Phys. A 66, 477–481 (1998).
[CrossRef]

Krug, J.

J. Krug, E. Sánchez, X. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10 895–10 901 (2002).
[CrossRef]

Lange, S.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Liu, C.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

López-Ri´os, T.

J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003).
[CrossRef]

Lynch, D.

D. Lynch, W. Hunter, “Introduction to the Data for Several Metals,” in E. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1985), p. 350.

Marquis-Weible, F.

O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002).
[CrossRef]

Martin, Y.

Y. Martin, H. Hamann, H. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

Metiu, H.

P. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Mrozek, I.

A. Otto, I. Mrozek, W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992).
[CrossRef]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003).
[CrossRef]

A. Hartschuh, N. Anderson, L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

L. Novotny, R. Bian, X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Near-field, far-field imaging properties of the 2D aperture SNOM,” Ultramicroscopy 57, 180–188 (1995).
[CrossRef]

O’Boyle, M.

F. Zenhausern, M. O’Boyle, H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Otto, A.

A. Otto, I. Mrozek, W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992).
[CrossRef]

Pack, A.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering of evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Pedarnig, J.

M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Pohl, D. W.

L. Novotny, D. W. Pohl, P. Regli, “Near-field, far-field imaging properties of the 2D aperture SNOM,” Ultramicroscopy 57, 180–188 (1995).
[CrossRef]

B. Hecht, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both worlds?” Ultramicroscopy 57, 228–334 (1995).
[CrossRef]

Porto, J. A.

J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003).
[CrossRef]

Quinten, M.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering of evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000).
[CrossRef]

Regli, P.

L. Novotny, D. W. Pohl, P. Regli, “Near-field, far-field imaging properties of the 2D aperture SNOM,” Ultramicroscopy 57, 180–188 (1995).
[CrossRef]

Sánchez, E.

J. Krug, E. Sánchez, X. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10 895–10 901 (2002).
[CrossRef]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000).
[CrossRef]

Schweiger, G.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Sekkat, Z.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Shchegrov, A.

A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000).
[CrossRef] [PubMed]

Specht, M.

M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Sqalli, O.

O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002).
[CrossRef]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Utke, I.

O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002).
[CrossRef]

Wang, D.

Wannemacher, R.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering of evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Weeber, J.-C.

C. Girard, A. Dereux, J.-C. Weeber, “Near-field optical contrasts in the Fresnel evanescent wave,” Phys. Rev. E 58, 1081–1085 (1998).
[CrossRef]

Wessel, J.

Wickramasinghe, H.

Y. Martin, H. Hamann, H. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

F. Zenhausern, M. O’Boyle, H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Willander, M.

N. Calander, M. Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,” J. Appl. Phys. 92, 4878–4884 (2002).
[CrossRef]

Wokaun, A.

A. Wokaun, “Surface enhancement of optical fields—mechanism and application,” Mol. Phys. 56, 1–33 (1985).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Xie, X.

J. Krug, E. Sánchez, X. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10 895–10 901 (2002).
[CrossRef]

L. Novotny, R. Bian, X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Zayats, A.

A. Zayats, “Electromagnetic field enhancement in the context of apertureless near-field microscopy,” Opt. Commun. 161, 156–162 (1999).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. O’Boyle, H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

B. Knoll, F. Keilmann, “Scanning microscopy by mid-infrared near-field scattering,” Appl. Phys. A 66, 477–481 (1998).
[CrossRef]

Appl. Phys. B (1)

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering of evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

F. Zenhausern, M. O’Boyle, H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130–3132 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

J. Appl. Phys. (3)

N. Calander, M. Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,” J. Appl. Phys. 92, 4878–4884 (2002).
[CrossRef]

O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near-field optical microscopy,” J. Appl. Phys. 92, 1078–1083 (2002).
[CrossRef]

Y. Martin, H. Hamann, H. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

J. Chem. Phys. (2)

J. Gersten, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surface,” J. Chem. Phys. 73, 3023–3037 (1980).
[CrossRef]

J. Krug, E. Sánchez, X. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10 895–10 901 (2002).
[CrossRef]

J. Microsc. (3)

T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field microscopy,” J. Microsc. 202, 72–76 (2000).
[CrossRef]

A. Hartschuh, N. Anderson, L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

R. Hillenbrandt, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

A. Otto, I. Mrozek, W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992).
[CrossRef]

Microsc. Microanal. Microstruct. (1)

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near field optical microscopy by local pertubation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1994).
[CrossRef]

Mol. Phys. (1)

A. Wokaun, “Surface enhancement of optical fields—mechanism and application,” Mol. Phys. 56, 1–33 (1985).
[CrossRef]

Opt. Commun. (3)

A. Zayats, “Electromagnetic field enhancement in the context of apertureless near-field microscopy,” Opt. Commun. 161, 156–162 (1999).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a di-electric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

J. A. Porto, P. Johansson, S. P. Apell, T. López-Rı́os, “Resonance shift effects in apertureless scanning near-field optical microscopy,” Phys. Rev. B 67, 085409–1 –085409–9 (2003).
[CrossRef]

Phys. Rev. E (1)

C. Girard, A. Dereux, J.-C. Weeber, “Near-field optical contrasts in the Fresnel evanescent wave,” Phys. Rev. E 58, 1081–1085 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

A. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000).
[CrossRef] [PubMed]

L. Novotny, R. Bian, X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903–1 –13 903–4 (2003).
[CrossRef]

M. Specht, J. Pedarnig, W. Heckl, T. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Surf. Sci. (1)

P. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983).
[CrossRef]

Ultramicroscopy (2)

B. Hecht, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both worlds?” Ultramicroscopy 57, 228–334 (1995).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Near-field, far-field imaging properties of the 2D aperture SNOM,” Ultramicroscopy 57, 180–188 (1995).
[CrossRef]

Other (8)

B. Hecht, “Forbidden light scanning near-field optical microscopy,” Ph.D. thesis (Universität Basel, Basel, Switzerland, 1996).

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).

C. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).

C. Hafner, Post-Modern Electromagnetics: Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).

D. Lynch, W. Hunter, “Introduction to the Data for Several Metals,” in E. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1985), p. 350.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

T. Kalkbrenner, “Charakterisierung und Manipulation der Plasmon-Resonanz eines einzelnen Gold-Nanopartikels,” Ph.D. thesis (Universität Konstanz, Konstanz, Germany, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic layout of the investigated setup. The p-polarized incident plane wave undergoes total internal reflection. Hence kz is purely imaginary in the upper half-space.

Fig. 2
Fig. 2

Electric field amplitude near the apex of a silver ellipsoid for evanescent excitation. For a larger particle size the strong dipolelike resonance shifts to longer wavelengths (redshift). As a result of the less symmetric excitation a smaller second resonance appears at 420 nm only at the front end of the particle. Conversely the back end shows a similar resonance at longer wavelengths indicated as a shoulder in the main resonance peak.

Fig. 3
Fig. 3

Electric field amplitude pattern for a silver ellipsoid with an axis ratio of 100 nm : 30 nm illuminated by an evanescent wave at different wavelengths. At 575 nm (c) the polarization inside the particle is nearly homogeneous, and the particle scatters like a dipole. Because of the evanescent field, a second mode is excited at shorter wavelengths with the electric field concentrated either at the front (a) or rear (b) end of the ellipsoid.

Fig. 4
Fig. 4

Electric field amplitude at the front apex for different separations Δ between the ellipsoid and the glass surface. The presence of the glass leads to a slight redshift of the main resonance for smaller separations.

Fig. 5
Fig. 5

Field enhancement near a 100-nm-long ellipsoid placed 5 nm above the glass interface. At the dipole resonance, the interaction with the glass results in different amplitudes at the front and back ends of the particle, whereas it is uniformly polarized without the glass surface.

Fig. 6
Fig. 6

Optical power scattered by the ellipsoid into the far field impinging on a detector covering a N.A. of 0.65 is investigated for the backward, forward, and sideward directions in the vacuum region. Similarly, the power scattered into the glass substrate was calculated for different N.A.s. The disk indicates the plotted area of the inset in Fig. 8.

Fig. 7
Fig. 7

Far-field power impinging on a detector positioned at three different locations for a 100-nm-long silver ellipsoid at Δ=5 nm above a glass surface, as well as for the same particle without any interface. The most efficient scattering corresponds to the highest field enhancement at the main SP resonance, whereas the resonance at 413 nm is barely visible.

Fig. 8
Fig. 8

Far-field power collected with a detector inside the glass half-space covering different numerical aperture ranges for a 100-nm-long silver ellipsoid at Δ=5 nm. The insets show the angular dependence of the scattered light at 575 nm and 347 nm projected on a plane. The dotted circles indicate the collected portions for N.A.=0.65 (white circle), N.A.=1 (black circle), up to N.A.=1.4 for the whole area. Most of the energy is scattered at angles around and higher than the critical one.

Metrics